992 resultados para CARIES CONTROL
Resumo:
This chapter presents a novel control strategy for trajectory tracking of underwater marine vehicles that are designed using port-Hamiltonian theory. A model for neutrally buoyant underwater vehicles is formulated as a PHS, and then the tracking controller is designed for the horizontal plane-surge, sway and yaw. The control design is done by formulating the error dynamics as a set-point regulation port-Hamiltonian control problem. The control design is formulated in two steps. In the first step, a static-feedback tracking controller is designed, and the second step integral action is added. The global asymptotic stability of the closed loop system is proved and the performance of the controller is illustrated using a model of an open-frame offshore underwater vehicle.
Resumo:
Marine craft (surface vessels, underwater vehicles, and offshore rigs) perform operations that require tight motion control. During the past three decades, there has been an increasing demand for higher accuracy and reliability of marinecraft motion control systems. Today, these control systems are an enabling factor for single and multicraft marine operations. This chapter provides an overview of the main characteristics and design aspects of motion control systems for marine craft. In particular, we discuss the architecture of the control system, the functionality of its main components, the characteristics of environmental disturbances, control objectives, and essential aspects of modeling and motion control design.
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
An ubiquitous problem in control system design is that the system must operate subject to various constraints. Although the topic of constrained control has a long history in practice, there have been recent significant advances in the supporting theory. In this chapter, we give an introduction to constrained control. In particular, we describe contemporary work which shows that the constrained optimal control problem for discrete-time systems has an interesting geometric structure and a simple local solution. We also discuss issues associated with the output feedback solution to this class of problems, and the implication of these results in the closely related problem of anti-windup. As an application, we address the problem of rudder roll stabilization for ships.
Resumo:
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system designs, which have proven to be far from trivial due to fundamental performance limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance and the applicability of different mathematical models, and it surveys the control methods that have been implemented and validated with full scale experiments. The paper also presents an outlook on what are believed to be potential areas of research within this topic.
Resumo:
In this article, we have described the main components of a ship motion-control system and two particular motion-control problems that require wave filtering, namely, dynamic positioning and heading autopilot. Then, we discussed the models commonly used for vessel response and showed how these models are used for Kalman filter design. We also briefly discussed parameter and noise covariance estimation, which are used for filter tuning. To illustrate the performance, a case study based on numerical simulations for a ship autopilot was considered. The material discussed in this article conforms to modern commercially available ship motion-control systems. Most of the vessels operating in the offshore industry worldwide use Kalman filters for velocity estimation and wave filtering. Thus, the article provides an up-to-date tutorial and overview of Kalman-filter-based wave filtering.
Resumo:
In moderate to high sea states, the effectiveness of ship fin stabilizers can severely deteriorate due to nonlinear effects arising from unsteady hydrodynamic characteristics of the fins: dynamic stall. These nonlinear effects take the form of a hysteresis, and they become very significant when the effective angle of attack of the fins exceeds a certain threshold angle. Dynamic stall can result in a complete loss of control action depending on how much the fins exceed the threshold angle. When this is detected, it is common to reduce the gain of the controller that commands the fins. This approach is cautious and tends to reduce performance when the conditions leading to dynamic stall disappear. An alternative approach for preventing the effects while keeping high performance, consists of estimating the effective angle of attack and set a conservative constraint on it as part of the control objectives. In this paper, we investigate the latter approach, and propose the use of a model predictive control (MPC) to prevent the development of these nonlinear effects by considering constraints on both the mechanical angle of the fins and the effective angle of attack.
Resumo:
The Marine Systems Simulator (MSS) is an environment which provides the necessary resources for rapid implementation of mathematical models of marine systems with focus on control system design. The simulator targets models¡Xand provides examples ready to simulate¡Xof different floating structures and its systems performing various operations. The platform adopted for the development of MSS is Matlab/Simulink. This allows a modular simulator structure, and the possibility of distributed development. Openness and modularity of software components have been the prioritized design principles, which enables a systematic reuse of knowledge and results in efficient tools for research and education. This paper provides an overview of the structure of the MSS, its features, current accessability, and plans for future development.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
In this note, we present a method to characterize the degradation in performance that arises in linear systems due to constraints imposed on the magnitude of the control signal to avoid saturation effects. We do this in the context of cheap control for tracking step signals.
Resumo:
This paper reviews some recent results in motion control of marine vehicles using a technique called Interconnection and Damping Assignment Passivity-based Control (IDA-PBC). This approach to motion control exploits the fact that vehicle dynamics can be described in terms of energy storage, distribution, and dissipation, and that the stable equilibrium points of mechanical systems are those at which the potential energy attains a minima. The control forces are used to transform the closed-loop dynamics into a port-controlled Hamiltonian system with dissipation. This is achieved by shaping the energy-storing characteristics of the system, modifying its interconnection structure (how the energy is distributed), and injecting damping. The end result is that the closed-loop system presents a stable equilibrium (hopefully global) at the desired operating point. By forcing the closed-loop dynamics into a Hamiltonian form, the resulting total energy function of the system serves as a Lyapunov function that can be used to demonstrate stability. We consider the tracking and regulation of fully actuated unmanned underwater vehicles, its extension to under-actuated slender vehicles, and also manifold regulation of under-actuated surface vessels. The paper is concluded with an outlook on future research.
Resumo:
In this paper, we consider a passivity-based approach for the design of a control law of multiple ship-roll gyro-stabiliser units. We extend previous work on control of ship roll gyro-stabilisation by considering the problem within a nonlinear framework. In particular, we derive an energy-based model using the port-Hamiltonian theory and then design an active precession controller using passivity-based control interconnection and damping assignment. The design considers the possibility of having multiple gyro-stabiliser units, and the desired potential energy of the system (in closed loop) is chosen to behave like a barrier function, which allows us to enforce constraints on the precession angle of the gyros.
Resumo:
In this paper, we consider the problem of position regulation of a class of underactuated rigid-body vehicles that operate within a gravitational field and have fully-actuated attitude. The control objective is to regulate the vehicle position to a manifold of dimension equal to the underactuation degree. We address the problem using Port-Hamiltonian theory, and reduce the associated matching PDEs to a set of algebraic equations using a kinematic identity. The resulting method for control design is constructive. The point within the manifold to which the position is regulated is determined by the action of the potential field and the geometry of the manifold. We illustrate the performance of the controller for an unmanned aerial vehicle with underactuation degree two-a quadrotor helicopter.
Resumo:
This paper proposes a method for design of a set-point regulation controller with integral action for an underactuated robotic system. The robot is described as a port-Hamiltonian system, and the control design is based on a coordinate transformation and a dynamic extension. Both the change of coordinates and the dynamic extension add extra degrees of freedom that facilitate the solution of the matching equation associated with interconnection and damping assignment passivity-based control designs (IDA-PBC). The stability of the controlled system is proved using the closed loop Hamiltonian as a Lyapunov candidate function. The performance of the proposed controller is shown in simulation.
Resumo:
This paper presents a control design for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle (UUV). The control design is based on Port-Hamiltonian theory. The target dynamics (desired dynamic response) is shaped with particular attention to the target mass matrix so that the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of uncontrolled states. Throughout the design, insight of the physical phenomena involved is used to propose the desired target dynamics. The performance of the design is demonstrated through simulation with a high-fidelity model.