913 resultados para Building energy-efficiency


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A presente dissertação centra-se no estudo das implicações originadas, ao nível das soluções construtivas presentes na envolvente dos edifícios de habitação, pelas recentes alterações efetuadas ao Regulamento de Desempenho Energético de Edifícios de Habitação (REH). Com o intuito de aferir o desempenho energético, através da aplicação do REH, considerou-se como caso de estudo um edifício de habitação novo, unifamiliar com tipologia T3, localizado a cerca de 10 metros acima do nível médio das águas do mar e na periferia da zona urbana de Vila Nova de Gaia. Após o levantamento das necessidades energéticas do edifício em estudo, realizaram-se diversas simulações, com o intuito de identificar e quantificar as alterações provocadas pela entrada em vigor da Portaria 379-A/2015, de 22 de outubro. Inicialmente estudou-se o comportamento térmico da habitação unifamiliar admitindo diferentes soluções construtivas: as soluções que cumpriam com as exigências em vigor até ao final de 2015 e as que cumprem as imposições atuais. Desta forma tentou perceber-se quais as implicações dessas alterações nas necessidades energéticas da habitação. Em seguida, e utilizando o mesmo conceito da simulação inicial, fez-se um estudo considerando que a fração se situava nas diferentes zonas climáticas existentes em Portugal. Para que tal fosse possível, teve que se considerar a implantação da habitação em diferentes localizações geográficas e a diferentes altitudes. Também se procurou avaliar a importância que as pontes térmicas planas assumem nas transferências de calor, nas duas estações. Assim, foi necessário fazer um pré- dimensionamento da solução estrutural adotada, quantificar a área destes elementos e o respetivo coeficiente de transmissão. Quantificou-se, posteriormente, quais as necessidades energéticas obtidas com a solução estrutural perfeitamente definida e as que se obteriam se se desprezasse a sua existência. Com as análises comparativas dos diferentes resultados obtidos, verificou-se que as atualizações das exigências regulamentares a que os edifícios de habitação estão sujeitos originam grande impacto nos sistemas construtivos adotados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PV energy is the direct conversion of solar radiation into electricity. In this paper, an analysis of the influence of parameters such as global irradiance or temperature in the performance of a PV installation has been carried out. A PV module was installed in a building at the University of Málaga, and these parameters were experimentally determined for different days and different conditions of irradiance and temperature. Moreover, IV curves were obtained under these conditions to know the open-circuit voltage and the short-circuit current of the module. With this information, and using the first law of thermodynamics, an energy analysis was performed to determine the energy efficiency of the installation. Similarly, using the second law of thermodynamics, an exergy analysis is used to obtain the exergy efficiency. The results show that the energy efficiency varies between 10% and 12% and the exergy efficiency between 14% and 17%. It was concluded that the exergy analysis is more suitable for studying the performance, and that only electric exergy must be considered as useful exergy. This exergy efficiency can be improved if heat is removed from the PV module surface, and an optimal temperature is reached.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research consists in studying the influence of the various type of construction systems of roofs with their energy efficiency as well as on the cost benefit for the commercial buildings on the temperatures condition of the city of Natal/RN. The main goal of this research is to analyze the cost benefit of the construction systems of roofs available on the market, taking into consideration the energy efficiency of the commercial buildings artificially air conditioned in order to be used by the projectors and to be adequated to the temperatures condition of the city of Natal/RN. The method of valuation of the cost benefit of roof systems consists in six steps: Features and simulation of the reference building; Analyze of sensitivity; Analyzes, features and simulation of alternatives of roof construction systems; Analyze of the cost of implementation; Analyze of the benefits of the alternatives comparing to the base case; And finally the analyze of the cost benefit. The model type chosen as reference was stores with pre molded buildings and system of roof with fiber ciment and ceiling . The thermal results showed the influence of the roof system on the energy efficiency of the building. The Final results of the simulations of the alternatives comes to a conclusion that the absortance is the variable that presents the best cost benefit relation and the reduction on the thermal transmittance still has limitations because of the high cost

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sustainability in buildings, while reducing the impact on the environment, contributes to the promotion of social welfare, to increase the health and productivity of occupants. The search for a way of build that meets the aspirations and development of humanity without, however, represent degradation of the environment, has become the great challenge of contemporary architecture. It is considered that the incorporation of principles that provide a sustainable building with careful choices of design solutions contribute to a better economic and thermal performance of the building, as well as functional and psychological comfort to its users. Based on this general understanding, this paper presents an architecture project aimed to health care whose the solutions adopted follow carefully the relevant legislation and sets his sights on the theme of sustainability. The methodology began with studies on the themes of verification service of deaths, sustainability and those application in construction developed through research in academic studies and analysis of architectural projects, using them like reference for the solutions adopted. Within the project analysis was performed a visit to the verification service of deaths in the city of Palmas in Tocantins, subsidizing information that, plus the relevant legislation, led to functional programming and pre-dimensional of the building to be designed. The result of this programming environments were individual records with information from environmental restrictions, space required for the development of activities, desirable flow and sustainability strategies, that can be considered as the first product of relevance of the professional master's degree. Finally we have outlined the basic design architecture of a Verification Service of Death SVO/RN (in portuguese), whose process of projecting defined as a guiding line of work four points: the use of bioclimatic architecture as the main feature projectual, the use of resources would provide minimal harm to the environment, the use of modulation and structure to the building as a form of rationalization and finally the search for solutions that ensure environmental and psychological comfort to users. Importantly to highlight that, besides owning a rare theme in literature that refers to architectural projects, the whole project was drawn up with foundations in projective criteria that contribute to environmental sustainability, with emphasis on thermal performance, energy efficiency and reuse of rainwater

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes the theoretical, methodological and programmatic proposal for a multifamily residential building located in the urban expansion area of Parnamirim/RN, inserted in the program Minha Casa Minha Vida and level of energy efficiency "A", as the RegulamentoTécnico de Qualidade (RTQ-R/INMETRO) for residential buildings. The development project initially consists of procedures as the study of theoretical, architectural programming and cases studies. With the delimitation of a field solution, situated between the reference and the context, proposals are studied to determine the solution and architectural detailing of the proposal. The architectural program was built based on the method of Problem Seeking (Peña and Parshall, 2001) and research has highlighted aspects of reducing the environmental impact and of the program Minha Casa Minha Vida , among others. The design process was characterized by the incorporation of aspects reviewed and programmed, seeking them compatible and have an economically viable building, socio-spatial quality and energy efficient. The results show that it is possible to obtain a building that meets the constraints of the program that provides housing and energy efficiency level A - and many other environmental qualities and constructive, particularly through architectural design

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this dissertation is the architectural project of the ambulatory complex of the Federal University of Pará in Belém. It is a health care establishment whose focus is sustainability, energy efficiency and humanization. This design went through the application of architectural concepts, the study of references (theorical and empirical ones), planning, examining the terrain and its conditions and the preliminay design and resulted in a preliminary architecture blueprint. The empirical research is based on the main building of the Hospital Universitário João de Barros Barreto in Belém, Hospital Sarah Kubitschek of Fortaleza (Architect João Filgueiras de Lima - Lelé) and Hospital e Maternity São Luiz of São Paulo (Architect Siegbert Zanettini). Part of the planning is based on the method "Problem Seeking of Pena and Parshal (2001)". During the development process I sought to incorporate sustainability criterias, energy efficiency and humanization. In relation to sustainability the dissertation focuses on the utilization of rainwater for non-potable usage

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of the research was to investigate the energy performance of residential vertical buildings envelope in the hot and humid climate of Natal, capital of Rio Grande do Norte, based in the Technical Regulation of Quality for Energy Efficiency Level in Residential Buildings (RTQ -R), launched in 2010. The study pretends to contribute to the development of design strategies appropriate to the specific local climate and the increasing of energy efficiency level of the envelope. The methodological procedures included the survey in 22 (twenty two) residential buildings, the formulation of representative prototypes based on typological and constructives characters researched and the classification of the level of energy efficiency in the envelopment of these prototypes, using as a tool the prescriptive method of the RTQ-R and the parametric analyzes from assigning different values of the following variables: shape of the pavement type; distribution of housing compartments; orientation of the building; area and shading of openings; thermal transmittance, and solar absorptance of opaque materials of the frontage in order to evaluate the influence of these on the envelopment performance. The main results accomplished with this work includes the qualification of vertical residential buildings in Natal/RN; the verification of the adequacy of these buildings to local climate based from the diagnosis of the thermal energy of the envelopment performance, the identification of variables with more significant influence on the prescriptive methodology of RTQ-R and design solutions more favorable to obtain higher levels energy efficiency by this method. Finally, it was verified, that some of these solutions proved contradictory in relation to the recommendations contained in the theoretical approaches regarding environmental comfort in hot and humid weather, which indicates the need for improvement of the prescriptive method RTQ-R and further research on efficient design solutions

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, the development of the photovoltaic (PV) technology is consolidated as a source of renewable energy. The research in the topic of maximum improvement on the energy efficiency of the PV plants is today a major challenge. The main requirement for this purpose is to know the performance of each of the PV modules that integrate the PV field in real time. In this respect, a PLC communications based Smart Monitoring and Communications Module, which is able to monitor at PV level their operating parameters, has been developed at the University of Malaga. With this device you can check if any of the panels is suffering any type of overriding performance, due to a malfunction or partial shadowing of its surface. Since these fluctuations in electricity production from a single panel affect the overall sum of all panels that conform a string, it is necessary to isolate the problem and modify the routes of energy through alternative paths in case of PV panels array configuration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

År 2006 införde Boverket, som lyder under regeringen krav för specifik energianvändning (kWh/m2år) för byggnader i syfte att minska energianvändningen för bostäder och lokaler. För att följa Boverkets krav för specifik energianvändning är det därför relevant att bygga mer energieffektiva byggnader. Naturmuseet Vänern är en byggnad i Karlstad som befinner sig vid Vänern. Byggnaden är omgiven av en naturskön miljö och dess verksamhet är huvudsakligen ett museum. Som helhet är Naturmuseet Vänern högt i tak och har stora fönsterytor vilket leder till att byggnaden behöver kylas på grund av den stora mängden solinstrålning. För att hålla sig till en låg specifik energianvändning är det därför relevant att hitta ett hållbart kylsystem. För att en byggnad ska bli energieffektiv i ett klimat såsom det i Sverige krävs ett byggnadsmaterial med lågt U-värde samt väl anpassade systemlösningar för värme, ventilation och kyla. Utifrån datorprogrammet VIP-Energy har en energianalys gjorts för Naturmuseet Vänern, vilket legat som grund för byggnadens utformning samt valet av byggnadsmaterial och kylsystem. Resultatet har utöver hur byggandes klimatskal ska se ut även landat i systemhandlingar i form av ritningar, driftstrategi och materialspecifikation för kylsystemet. Den lägsta specifika energianvändningen för Naturmuseet Vänern är 37 kWh/m2år, vilket fås då bergkyla väljs som kylsystem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger. The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17. In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand. It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Greenhouse production is a very important activity in the West region of Portugal, with an area of approximately 800 ha where the regular production consists in two crops per year, one in winter-spring and the other in summer-autumn. Many growers are now prepared to better exploit market opportunities, since they know that the big export window opportunity is from June to September, when the production is difficult in other regions of south due to high temperatures. Grower’s use new and more productive varieties, either in soil or hydroponic systems, mostly in unheated greenhouses, naturally ventilated, and equipped with modern fertigation systems. Greenhouse production causes some environmental impacts due to the high use of inputs. Several improvements in technologies and crop practices may contribute to increase the use efficiency of resources, decreasing the negative environmental impacts. Greenhouse vegetable production in Northern EU countries is based on the supply of heating and differs significantly from the production system in the Southern EU countries. In the Northern countries, direct energy inputs, mostly for heating, are predominant while in the South the indirect energy input is also important, mainly associated with fertilizers, plastic cover materials and other auxiliary materials. The main objective of this work was to characterise the greenhouse production systems in the West region of Portugal, in order to evaluate the energetic consumptions (direct and indirect), the GHH emissions, the production costs and the farmer’s income. With this work the mostly important inputs were identified, allowing proposing alternative measures to improve efficiency and sustainability. All the data was obtained by surveys performed directly with growers, previously selected to be representative of the crop practices and greenhouse type of the region. However, more research should be performed in order to develop and to test technologies capable to improve resources use efficiency in greenhouse production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stirling engines with parabolic dish for thermal to electric conversion of solar energy is one of the most promising solutions of renewable energy technologies in order to reduce the dependency from fossil fuels in electricity generation. This paper addresses the modelling and simulation of a solar powered Stirling engine system with parabolic dish and electric generator aiming to determine its energy production and efficiency. The model includes the solar radiation concentration system, the heat transfer in the ther- mal receiver, the thermal cycle and the mechanical and electric energy conversion. The thermodynamic and energy transfer processes in the engine are modelled in detail, including all the main processes occur- ring in the compression, expansion and regenerator spaces. Starting from a particular configuration, an optimization of the concentration factor is also carried out and the results for both the transient and steady state regimes are presented. It was found that using a directly illuminated thermal receiver with- out cavity the engine efficiency is close to 23.8% corresponding to a global efficiency of 10.4%. The com- ponents to be optimized are identified in order to increase the global efficiency of the system and the trade-off between system complexity and efficiency is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.