978 resultados para Briggs, Chris
Resumo:
The Heliospheric Imager (HI) instruments on board the STEREO spacecraft are used to analyze the solar wind during August and September 2007. We show how HI can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates inside and in the vicinity of the streamer belt. Intermittent mass flows are observed in HI difference images, streaming out along the extension of helmet streamers. These flows can appear very differently in images: plasma distributed on twisted flux ropes, V‐shaped structures, or “blobs.” The variety of these transient features may highlight the richness of phenomena that could occur near helmet streamers: emergence of flux ropes, reconnection of magnetic field lines at the tip of helmet streamers, or disconnection of open magnetic field lines. The plasma released with these transient events forms part of the solar wind in the higher corona; HI observations show that these transients are frequently entrained by corotating interaction regions (CIRs), leading to the formation of larger, brighter plasma structures in HI images. This entrainment is used to estimate the trajectory of these plasma ejecta. In doing so, we demonstrate that successive transients can be entrained by the same CIR in the high corona if they emanate from the same corotating source. Some parts of the streamers are more effective sources of transients than others. Surprisingly, evidence is given for the outflow of a recurring twisted magnetic structure, suggesting that the emergence of flux ropes can be recurrent.
Resumo:
The suite of SECCHI optical imaging instruments on the STEREO-A spacecraft is used to track a solar storm, consisting of several coronal mass ejections (CMEs) and other coronal loops, as it propagates from the Sun into the heliosphere during May 2007. The 3-D propagation path of the largest interplanetary CME (ICME) is determined from the observations made by the SECCHI Heliospheric Imager (HI) on STEREO-A (HI-1/2A). Two parts of the CME are tracked through the SECCHI images, a bright loop and a V-shaped feature located at the rear of the event. We show that these two structures could be the result of line-of-sight integration of the light scattered by electrons located on a single flux rope. In addition to being imaged by HI, the CME is observed simultaneously by the plasma and magnetic field experiments on the Venus Express and MESSENGER spacecraft. The imaged loop and V-shaped structure bound, as expected, the flux rope observed in situ. The SECCHI images reveal that the leading loop-like structure propagated faster than the V-shaped structure, and a decrease in in situ CME speed occurred during the passage of the flux rope.We interpret this as the result of the continuous radial expansion of the flux rope as it progressed outward through the interplanetary medium. An expansion speed in the radial direction of ~30 km s-1 is obtained directly from the SECCHI-HI images and is in agreement with the difference in speed of the two structures observed in situ. This paper shows that the flux rope location can be determined from white light images, which could have important space weather applications.
Resumo:
The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remotesensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.
Resumo:
More data will be produced in the next five years than in the entire history of human kind, a digital deluge that marks the beginning of the Century of Information. Through a year-long consultation with UK researchers, a coherent strategy has been developed, which will nurture Century-of-Information Research (CIR); it crystallises the ideas developed by the e-Science Directors' Forum Strategy Working Group. This paper is an abridged version of their latest report which can be found at: http://wikis.nesc.ac.uk/escienvoy/Century_of_Information_Research_Strategy which also records the consultation process and the affiliations of the authors. This document is derived from a paper presented at the Oxford e-Research Conference 2008 and takes into account suggestions made in the ensuing panel discussion. The goals of the CIR Strategy are to facilitate the growth of UK research and innovation that is data and computationally intensive and to develop a new culture of 'digital-systems judgement' that will equip research communities, businesses, government and society as a whole, with the skills essential to compete and prosper in the Century of Information. The CIR Strategy identifies a national requirement for a balanced programme of coordination, research, infrastructure, translational investment and education to empower UK researchers, industry, government and society. The Strategy is designed to deliver an environment which meets the needs of UK researchers so that they can respond agilely to challenges, can create knowledge and skills, and can lead new kinds of research. It is a call to action for those engaged in research, those providing data and computational facilities, those governing research and those shaping education policies. The ultimate aim is to help researchers strengthen the international competitiveness of the UK research base and increase its contribution to the economy. The objectives of the Strategy are to better enable UK researchers across all disciplines to contribute world-leading fundamental research; to accelerate the translation of research into practice; and to develop improved capabilities, facilities and context for research and innovation. It envisages a culture that is better able to grasp the opportunities provided by the growing wealth of digital information. Computing has, of course, already become a fundamental tool in all research disciplines. The UK e-Science programme (2001-06)—since emulated internationally—pioneered the invention and use of new research methods, and a new wave of innovations in digital-information technologies which have enabled them. The Strategy argues that the UK must now harness and leverage its own, plus the now global, investment in digital-information technology in order to spread the benefits as widely as possible in research, education, industry and government. Implementing the Strategy would deliver the computational infrastructure and its benefits as envisaged in the Science & Innovation Investment Framework 2004-2014 (July 2004), and in the reports developing those proposals. To achieve this, the Strategy proposes the following actions: support the continuous innovation of digital-information research methods; provide easily used, pervasive and sustained e-Infrastructure for all research; enlarge the productive research community which exploits the new methods efficiently; generate capacity, propagate knowledge and develop skills via new curricula; and develop coordination mechanisms to improve the opportunities for interdisciplinary research and to make digital-infrastructure provision more cost effective. To gain the best value for money strategic coordination is required across a broad spectrum of stakeholders. A coherent strategy is essential in order to establish and sustain the UK as an international leader of well-curated national data assets and computational infrastructure, which is expertly used to shape policy, support decisions, empower researchers and to roll out the results to the wider benefit of society. The value of data as a foundation for wellbeing and a sustainable society must be appreciated; national resources must be more wisely directed to the collection, curation, discovery, widening access, analysis and exploitation of these data. Every researcher must be able to draw on skills, tools and computational resources to develop insights, test hypotheses and translate inventions into productive use, or to extract knowledge in support of governmental decision making. This foundation plus the skills developed will launch significant advances in research, in business, in professional practice and in government with many consequent benefits for UK citizens. The Strategy presented here addresses these complex and interlocking requirements.
Resumo:
Plasma parcels are observed propagating from the Sun out to the large coronal heights monitored by the Heliospheric Imagers (HI) instruments onboard the NASA STEREO spacecraft during September 2007. The source region of these out-flowing parcels is found to corotate with the Sun and to be rooted near the western boundary of an equatorial coronal hole. These plasma enhancements evolve during their propagation through the HI cameras’ fields of view and only becoming fully developed in the outer camera field of view. We provide evidence that HI is observing the formation of a Corotating Interaction Region(CIR) where fast solar wind from the equatorial coronal hole is interacting with the slow solar wind of the streamer belt located on the western edge of that coronal hole. A dense plasma parcel is also observed near the footpoint of the observed CIR at a distance less than 0.1AU from the Sun where fast wind would have not had time to catch up slow wind. We suggest that this low-lying plasma enhancement is a plasma parcel which has been disconnected from a helmet streamer and subsequently becomes embedded inside the corotating interaction region.
Resumo:
The phenolic compositions of fecal water samples from ten free-living human subjects without marked dietary restrictions were monitored before and after intake of raspberry puree (200 g/day, 4 days) using gas chromatography-mass spectrometry. No single phenolic component was increased in all subjects after intake, but a majority of subjects had significant elevations in phenylacetic acid (7/10), 4-hydroxyphenylacetic acid (6/10), 3-hydroxyphenylacetic acid (5/10), 3-phenylpropionic acid and 3-(4-hydroxyphenyl)propionic acid. The levels of 3,4-dihydroxbenzoic acid were elevated in 8/10 subjects, significantly for 6 subjects (p < 0.05), and not significantly reduced in the other 2 subjects. In addition, unlike most other fecal metabolites, the increase was always >2-fold. This metabolite may be representative of the increased colonic dose of cyanidin anthocyanins. The colonic microbiota varied greatly between individuals, and supplementation with raspberries did not produce any statistically significant alterations in the profile of colonic bacteria, nor was a common pattern revealed to account for the interindividual variations observed in the fecal water phenolic profiles.
Resumo:
We have compiled two comprehensive gene expression profiles from mature leaf and immature seed tissue of rice (Oryza sativa ssp. japonica cultivar Nipponbare) using Serial Analysis of Gene Expression (SAGE) technology. Analysis revealed a total of 50 519 SAGE tags, corresponding to 15 131 unique transcripts. Of these, the large majority (approximately 70%) occur only once in both libraries. Unexpectedly, the most abundant transcript (approximately 3% of the total) in the leaf library was derived from a type 3 metallothionein gene. The overall frequency profiles of the abundant tag species from both tissues differ greatly and reveal seed tissue as exhibiting a non-typical pattern of gene expression characterized by an over abundance of a small number of transcripts coding for storage proteins. A high proportion ( approximately 80%) of the abundant tags (> or = 9) matched entries in our reference rice EST database, with many fewer matches for low abundant tags. Singleton transcripts that are common to both tissues were collated to generate a summary of low abundant transcripts that are expressed constitutively in rice tissues. Finally and most surprisingly, a significant number of tags were found to code for antisense transcripts, a finding that suggests a novel mechanism of gene regulation, and may have implications for the use of antisense constructs in transgenic technology.
Resumo:
A scheme to describe SDS−lysozyme complex formation has been proposed on the basis of isothermal titration calorimetry (ITC) and FTIR spectroscopy data. ITC isotherms are convoluted and reveal a marked effect of both SDS and lysozyme concentration on the stoichiometry of the SDS−lysozyme complex. The binding isotherms have been described with the aid of FTIR spectroscopy in terms of changes in the lysozyme structure and the nature of the SDS binding. At low SDS concentrations, ITC isotherms feature an exothermic region that corresponds to specific electrostatic binding of SDS to positively charged amino acid residues on the lysozyme surface. This leads to charge neutralization of the complex and precipitation. The number of SDS molecules that bind specifically to lysozyme is approximately 8, as determined from our ITC isotherms, and is independent of lysozyme solution concentration. At high SDS concentrations, hydrophobic cooperative association dominates the binding process. Saturated binding stoichiometries as a molar ratio of SDS per molecule of lysozyme range from 220:1 to 80:1, depending on the lysozyme solution concentration. A limiting value of 78:1 has been calculated for lysozyme solution concentrations above 0.25 mM.
Resumo:
FOREWORD Welcome to this West Africa Built Environment Research (WABER) conference taking place here in Ghana. Thank you for coming and welcome to Accra. The main aims of the WABER conference are: to help young researchers and early-career scholars in West Africa to develop their research work and skills through constructive face-to-face interaction with experienced academics; to provide a platform for networking and collaborative work among senior built environment academics in West Africa; and to serve as a vehicle for developing the field of construction management and economics in Africa. Waber 2009 The WABER event in 2009 was held at the British Council in Accra, Ghana on 2-3 June. The event was a resounding success. It attracted participation from 32 researchers, from 12 different institutions, who presented their work to an audience of approximately 100 people. Each presenter received immediate and constructive feedback from an international panel. The event was opened by Professor K.K. Adarkwa, Vice Chancellor of KNUST, Kumasi, Ghana, with several senior academics and researchers from universities, polytechnics, and other institutions in Ghana and Nigeria in attendance. There was also a significant level of attendance by senior construction practitioners in Ghana. Thank you to the School of Construction Management and Engineering, University of Reading, UK for funding the inaugural event in 2009. We are also grateful to all of you who helped to make the event a success and to those of you who have joined us here today to build upon the success and legacy of WABER 2009. Waber 2010 This year, we have 60+ peer-reviewed papers and presentations on topics relating to Building services and maintenance, Construction costs, Construction design and technology, Construction education, Construction finance, Construction procurement, Contract administration, Contract management, Contractor development, Decision support systems, Dispute resolution, Economic development, Energy efficiency, Environment and sustainability, Health and safety, Human resources, Information technology, Marketing, Materials science, Organisation strategy and business performance, Productivity, Project management, Quantity surveying, Real estate and planning, Solar energy systems, Supply chain management and Urban development. We hope that these papers will generate interest among delagates and stimulate discussion here and beyond the conference into the wider community of academia and industry. The delegates at this conference come from 10 different countries. This provides a rich international and multicultural blend and a perfect platform for networking and developing collaborations. This year we are blessed to have three high profile keynote speakers in the persons of Professor George Ofori (National University of Singapore), Dr Roine Leiringer (University of Reading, UK) and Professor Will Hughes (University of Reading, UK). We are also thankful to Dr Chris Harty (University of Reading, UK) who is facilitating the Research Skills Workshop on ‘Writing a scientific article’. Thank you to Dr Sena Agyepong of our conference organising team for her capable management of local organising arrangements. And above all, thank you to all of you for coming to this conference. Enjoy and have a safe journey back home. Dr Samuel Laryea School of Construction Management and Engineering University of Reading, July 2010
Resumo:
Plant secondary metabolites glucosinolates (GSL) have important functions in plant resistance to herbivores and pathogens. We identified all major GSL that are accumulated in S-cells in Arabidopsis by MALDI-TOF MS, and estimated by LC-MS that the total GSL concentration in these cells is above 130 mM. The precise locations of the S-cells outside phloem bundles in rosette and cauline leaves and in flower stalks were visualised using sulphur mapping by cryo-SEM/EDX. S-cells contain up to 40% of total sulphur in flower stalk tissues. S-cells in emerging flower stalks and developing leaf tissues show typical signs of Programmed Cell Death (PCD) or apoptosis, such as chromatin condensation in the nucleus and blebbing of the membranes. TUNEL staining for DNA double strand breaks confirmed PCD in S-cells in postmeristematic tissues in the flower stalk as well as in the leaf. Our results show that S-cells in postmeristematic tissues proceed to an extreme degree of metabolic specialisation besides PCD. Accumulation and maintenance of a high concentration of GSL in these cells are accompanied by degradation of a number of cell organelles. The substantial changes in the cell composition during S-cell differentiation indicate the importance of this particular GSL-based phloem defence system. The specific anatomy of the S-cells and ability to accumulate specialised secondary metabolites is similar to that of the non-articulated laticifer cells in latex plants and thus indicates a common evolutionary origin.