978 resultados para Bridges -- Contests
Resumo:
Despite clear evidence of correlations between financial and medical statuses and decisions, most models treat financial and health-related choices separately. This article bridges this gap by proposing a tractable dynamic framework for the joint determination of optimal consumption, portfolio holdings, health investment, and health insurance. We solve for the optimal rules in closed form and capitalize on this tractability to gain a better understanding of the conditions under which separation between financial and health-related decisions is sensible, and of the pathways through which wealth and health determine allocations, welfare and other variables of interest such as expected longevity or the value of health. Furthermore we show that the model is consistent with the observed patterns of individual allocations and provide realistic estimates of the parameters that confirm the relevance of all the main characteristics of the model.
Design and Evaluation of a Single-Span Bridge Using Ultra- High Performance Concrete, September 2009
Resumo:
Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possible code adoption and to provide a performance evaluation to ensure the viability of the first UHPC bridge in the United States. Two other secondary objectives included defining of material properties and understanding of flexural behavior of a UHPC bridge girder. In order to obtain information in these areas, several tests were carried out including material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of a UHPC bridge. Experimental and analytical results of the described tests are presented. Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer based procedures. Previous research is referenced explaining a simplified flexural design procedure and a simplified pure shear design procedure. This work describes a shear design procedure based on the Modified Compression Field Theory (MCFT) which can be used in the design of UHPC members. Conclusions are provided regarding the viability of the UHPC bridge and recommendations are made for future research.
Resumo:
Recent reports have indicated that 23.5 percent of the nation's highway bridges are structurally deficient and 17.7 percent are functionally obsolete. A significant number of these bridges are on the Iowa county road system. The objective of the investigation described in this report was to identify, review and evaluate replacement bridges currently being used by various counties in Iowa and surrounding states. Iowa county engineers, county engineers in neighboring states as well as private manufacturers of bridge components, and regional precad prestressed concrete manufacturers were contacted to determine the most common replacement bridge types being used. Depending upon the findings of the review, possible improvements and/or new replacement bridge systems were to be proposed. A questionnaire was developed and sent to county engineers in Iowa and several counties in surrounding states. The results of the questionnaire showed that the most common replacement bridges in Iowa are the continuous concrete slab and prestressed concrete bridges. The primary reason these types are used is because of the availability of standard designs and because of their ease of maintenance. Counties seldom construct these types of bridges using their own labor forces, but instead contract the work. However, county forces are used to construct steel stringer, precast reinforced concrete and timber bridges. In general, 69 percent of the counties indicate an ability and willingness to use their own forces to design and construct relatively short span bridges (i.e., 40 A or less) provided the construction procedures are relatively simple. Several unique replacement bridge types used in Iowa that are constructed by county forces are documented and presented in this report. Sufficient details are provided to allow county engineers to determine if some of these bridges could be used to resolve some of their own replacement bridge problems. Where possible, cost information has also been provided. Each of these bridge types were evaluated for various criteria (e.g., cost effectiveness, conformance to AASI-ITO standards, range of sizes, etc.) by a panel of four Iowa county engineers; a summary of this critique is included. After evaluating the questionnaire responses from the counties and evaluating the various bridge replacement concepts currently in use, one new bridge replacement concept and one modification of a current Iowa county bridge replacement concept were developed. Both of these concepts would utilize county labor forces.
Resumo:
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Bridge Project and 2) development of a web-based project management system for bridge and highway construction projects with less than $10 million in contract value. During the previous phase of this project (fiscal year 2010), the research team helped with the implementation process for AEC Sync and collected feedback from the Broadway Viaduct project team members before the start of the project. During the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The results of the AEC Sync implementation on the Broadway project were positive. The project members were satisfied with the performance of the AEC Sync software and how it facilitated document management and its transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge Project. The implementation of AEC Sync for the Iowa Falls Arch Bridge Project appears to also be positive, based on the pre-project surveys. The fourth phase of this electronic collaboration project involves the identification and implementation of a WPMS solution for smaller bridge and highway projects. The workflow for the shop drawing approval process for sign truss projects was documented and used to identify possible WPMS solutions. After testing and evaluating several WPMS solutions, Microsoft SharePoint Foundation’s site pages were selected to be pilot-tested on sign truss projects. Due to the limitation on the SharePoint license that the Iowa Department of Transportation (DOT) has, a file transfer protocol (FTP) site will be developed alongside this site to allow contractors to upload shop drawings to the Iowa DOT. The SharePoint site pages are expected to be ready for implementation during the 2012 calendar year.
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, Revenue Bonds Capitals, and Revenue Bonds Capitals II. In addition, we have included status reports for the FY11 passenger rail appropriation from the Underground Storage Tank Fund and the FY2010 Commercial Service Vertical Infrastructure appropriation from the General Fund.
Resumo:
Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of stream bed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.
Resumo:
The State of Iowa [STATE] and the Iowa Department of Transportation [IDOT] hereby is claim any warranty of any kind, express or implied, in reference to the information contained herein. The STATE and the IDOT neither assume nor authorize any person to assume for the STATE or the IDOT any liability in connection with the information contained herein, and there are no oral agreements or warranties regarding the information contained herein. Each and every person is hereby notified that the vertical clearances specified herein are subject to change due to resurfacing, surface buckling, weather conditions, or any other event. It is the responsibility of each and every vehicle operator to ascertain whether sufficient ACTUAL vertical clearance exists to move his vehicle or motor vehicle between the roadway and the underpasses and bridges listed herein. The May 15 date on this map reflects the end of the update schedule for the previous calendar year. Any vertical clearance restrictions which could or may change AFTER this date will not be reflected on this map. For the latest information on vertical clearance restrictions call the Office of Motor Carrier Services in Ankeny, (515) 237-3264 or visit http://www.iowadot.gov/mvd/omcs.
Resumo:
Per legislative requirement, attached is the Iowa Department of Transportation’s summary of project status for infrastructure projects that have been appropriated revenue from various funds including Rebuild Iowa Infrastructure, Health Restricted Capitals, Bridge Safety, Revenue Bonds Capitals, and Revenue Bonds Capitals II. In addition, we have included status reports for the FY11 passenger rail appropriation from the Underground Storage Tank Fund and the FY2010 Commercial Service Vertical Infrastructure appropriation from the General Fund.
Resumo:
Iowa’s infrastructure is at a crossroads. A stalwart collection of Iowans dared to consider Iowa’s future economy, the way ahead for future generations, and what infrastructure will be required – and what will not be required – for Iowa to excel. The findings are full of opportunity and challenge. The Infrastructure Plan for Iowa’s Future Economy: A Strategic Direction tells the story and points the way to a strong economy and quality of life for our children and our children’s children. This plan is different from most in that the motivation for its development came not from a requirement to comply or achieve a particular milestone, but, rather, from a recognition that infrastructure, in order to ensure a globally-competitive future economy, must transform from that of past generations. It is not news that all infrastructure – from our rich soil to our bridges – is a challenge to maintain. Prior to the natural disasters of 2008 and the national economic crisis, Iowa was tested in its capacity to sustain not only the infrastructure, but to anticipate future needs. It is imperative that wise investments and planning guide Iowa’s infrastructure development. This plan reflects Iowa’s collective assessment of its infrastructure– buildings, energy, natural resources, telecommunications, and transportation – as, literally, interdependent building blocks of our future. Over the months of planning, more than 200 Iowans participated as part of committees, a task force, or in community meetings. The plan is for all of Iowa, reflected in private, nonprofit, and public interests and involvement throughout the process. Iowa’s success depends on all of Iowa, in all sectors and interests, to engage in its implementation. The Infrastructure Plan for Iowa’s Future Economy: A Strategic Direction sets a clear and bold direction for all stakeholders, making it clear all have a responsibility and an opportunity to contribute to Iowa’s success.
Resumo:
Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can adversely affect the operation of the waterway opening or cause failure of the structure. In addition, removal of debris accumulation is difficult, time consuming, and expensive for maintenance programs. This research involves a literature search of publications, products, and pier design recommendations that provide a cost effective method to mitigate debris accumulation at bridges. In addition, a nationwide survey was conducted to determine the state-of-the-practice and the results are presented within.
Resumo:
This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feasibility and cost effectiveness of the use of GRS bridge abutments on low-volume roads (LVRs). The two projects included GRS abutment substructures and railroad flat car (RRFC) bridge superstructures. The construction costs varied from $43k to $49k, which was about 50 to 60% lower than the expected costs for building a conventional bridge. Settlement monitoring at both bridges indicated maximum settlements ≤1 in. and differential settlements ≤ 0.2 in transversely at each abutment, during the monitoring phase. Laboratory testing on GRS fill material, field testing, and in ground instrumentation, abutment settlement monitoring, and bridge live load (LL) testing were conducted on Bridge 2. Laboratory test results indicated that shear strength parameters and permanent deformation behavior of granular fill material improved when reinforced with geosynthetic, due to lateral restraint effect at the soilgeosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was low (< 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and a relatively weak underlying foundation layer. Global stability analysis of the GRS abutment structure revealed a lower FS than recommended against sliding failure along the interface of the GRS fill material and the underlying weak foundation layer. Design and construction recommendations to help improve the stability and performance of the GRS abutment structures on future projects, and recommendations for future research are provided in this report.
Resumo:
In the past, many pier columns were deteriorating due to attack by chlorides. The chloride (from deicers) has attacked the substructures by drainage from the superstructure. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from lower level traffic. Repairs of these piers are both difficult and costly. In this project, four different sealants were applied to piers to evaluate their use in the protection of the concrete against chloride-ions. One pier was left untreated to use as a control pier with which to compare the protected piers. This project began in 1980 and was to be completed in 1985, but at that time it was determined further testing was needed to make a more conclusive evaluation.
Resumo:
The objective of this study was to develop guidelines for use of the Iowa Vanes technique for sediment control in bridge waterways. Iowa Vanes are small flow-training structures (foils) designed to modify the near-bed flow pattern and redistribute flow and sediment transport within the channel cross section. The structures are installed at an angleof attack of 15 - 25' with the flow, and their initial height is 0.2 - 0.5 times water depth at design stage. The vanes function by generating secondary circulation in the flow. The circulation alters magnitude and direction of the bed shear stress and causes a reduction in velocity and sediment transport in the vane controlled area. As a result, the river bed aggrades in the vane controlled area and degrades outside. This report summarizes the basic theory, describes results of laboratory and field tests, and presents the resulting design procedure. Design graphs have been developed based on the theory. The graphs are entered with basic flow variables and desired bed topography. The output is vane layout and design. The procedure is illustrated with two numerical examples prepared with data that are typical for many rivers in Iowa and the midwest. The report also discusses vane material. In most applications, the vane height will be between 30% and 50% of bankfull flow depth and the vane length will be two to three times vane height. The vanes will be placed in arrays along the bank of the river. Each array will contain two or more vanes. The vanes in an array will be spaced laterally a distance of two to three times vane height. The streamwise spacing between the arrays will be 15 to 30 times vane height, and the vane-to-bank distance will be three to four times vane height. The study also show that the first (most upstream) array in the vane system must be located a distance of at least three array spacings upstream from the bridge, and there must be at least three arrays in the system for it to be effective at and downstream from the third array.
Resumo:
A large percentage of bridges in the state of Iowa are classified as structurally or fiinctionally deficient. These bridges annually compete for a share of Iowa's limited transportation budget. To avoid an increase in the number of deficient bridges, the state of Iowa decided to implement a comprehensive Bridge Management System (BMS) and selected the Pontis BMS software as a bridge management tool. This program will be used to provide a selection of maintenance, repair, and replacement strategies for the bridge networks to achieve an efficient and possibly optimal allocation of resources. The Pontis BMS software uses a new rating system to evaluate extensive and detailed inspection data gathered for all bridge elements. To manually collect these data would be a highly time-consuming job. The objective of this work was to develop an automated-computerized methodology for an integrated data base that includes the rating conditions as defined in the Pontis program. Several of the available techniques that can be used to capture inspection data were reviewed, and the most suitable method was selected. To accomplish the objectives of this work, two userfriendly programs were developed. One program is used in the field to collect inspection data following a step-by-step procedure without the need to refer to the Pontis user's manuals. The other program is used in the office to read the inspection data and prepare input files for the Pontis BMS software. These two programs require users to have very limited knowledge of computers. On-line help screens as well as options for preparing, viewing, and printing inspection reports are also available. The developed data collection software will improve and expedite the process of conducting bridge inspections and preparing the required input files for the Pontis program. In addition, it will eliminate the need for large storage areas and will simplify retrieval of inspection data. Furthermore, the approach developed herein will facilitate transferring these captured data electronically between offices within the Iowa DOT and across the state.
Resumo:
This report describes the results of the research project investigating the use of advanced field data acquisition technologies for lowa transponation agencies. The objectives of the research project were to (1) research and evaluate current data acquisition technologies for field data collection, manipulation, and reporting; (2) identify the current field data collection approach and the interest level in applying current technologies within Iowa transportation agencies; and (3) summarize findings, prioritize technology needs, and provide recommendations regarding suitable applications for future development. A steering committee consisting oretate, city, and county transportation officials provided guidance during this project. Technologies considered in this study included (1) data storage (bar coding, radio frequency identification, touch buttons, magnetic stripes, and video logging); (2) data recognition (voice recognition and optical character recognition); (3) field referencing systems (global positioning systems [GPS] and geographic information systems [GIs]); (4) data transmission (radio frequency data communications and electronic data interchange); and (5) portable computers (pen-based computers). The literature review revealed that many of these technologies could have useful applications in the transponation industry. A survey was developed to explain current data collection methods and identify the interest in using advanced field data collection technologies. Surveys were sent out to county and city engineers and state representatives responsible for certain programs (e.g., maintenance management and construction management). Results showed that almost all field data are collected using manual approaches and are hand-carried to the office where they are either entered into a computer or manually stored. A lack of standardization was apparent for the type of software applications used by each agency--even the types of forms used to manually collect data differed by agency. Furthermore, interest in using advanced field data collection technologies depended upon the technology, program (e.g.. pavement or sign management), and agency type (e.g., state, city, or county). The state and larger cities and counties seemed to be interested in using several of the technologies, whereas smaller agencies appeared to have very little interest in using advanced techniques to capture data. A more thorough analysis of the survey results is provided in the report. Recommendations are made to enhance the use of advanced field data acquisition technologies in Iowa transportation agencies: (1) Appoint a statewide task group to coordinate the effort to automate field data collection and reporting within the Iowa transportation agencies. Subgroups representing the cities, counties, and state should be formed with oversight provided by the statewide task group. (2) Educate employees so that they become familiar with the various field data acquisition technologies.