873 resultados para Box Butte Experiment farm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper explores the impact of insect-resistant Bacillus thuringiensis (Bt) cotton on costs and returns over the first two seasons of its commercial release in three sub-regions of Maharashtra State, India. It is the first such research conducted in India based on farmers' own practices rather than trial plots. Data were collected for a total of 7793 cotton plots in 2002 and 1577 plots in 2003. Results suggest that while the cost of cotton seed was much higher for farmers growing Bt cotton relative to those growing non-Bt cotton, the costs of bollworm spray were much lower. While Bt plots had greater costs (seed plus insecticide) than non-Bt plots, the yields and revenue from Bt plots were much higher than those of non-Bt plots (some 39% and 63% higher in 2002 and 2003, respectively). Overall, the gross margins of Bt plots were some 43% (2002) and 73% (2003) higher than those of non-Bt plots, although there was some variation between the three sub-regions of the state. The results suggest that Bt cotton has provided substantial benefits for farmers in India over the 2 years, but there are questions as to whether these benefits are sustainable. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several aspects of terrestrial ecosystems are known to be associated with the North Atlantic Oscillation (NAO) through effects of the NAO on winter climate, but recently the winter NAO has also been shown to be correlated with the following summer climate, including drought. Since drought is a major factor determining grassland primary productivity, the hypothesis was tested that the winter NAO is associated with summer herbage growth through soil moisture availability, using data from the Park Grass Experiment at Rothamsted, UK between 1960 and 1999. The herbage growth rate, mean daily rainfall, mean daily potential evapotranspiration (PE) and the mean and maximum potential soil moisture deficit (PSMD) were calculated between the two annual cuts in early summer and autumn for the unlimed, unfertilized plots. Mean and maximum PSMD were more highly correlated than rainfall or PE with herbage growth rate. Regression analysis showed that the natural logarithm of the herbage growth rate approximately halved for a 250 mm increase in maximum PSMD over the range 50-485 mm. The maximum PSMD was moderately correlated with the preceding winter NAO, with a positive winter NAO index associated with greater maximum PSMD. A positive winter NAO index was also associated with low herbage growth rate, accounting for 22% of the interannual variation in the growth rate. It was concluded that the association between the winter NAO and summer herbage growth rate is mediated by the PSMD in summer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(from author) One of the first papers in the peer-review literature to discuss an OSSE to evaluate future wind observations in the stratosphere. Provides key evidence to justify the construction of the SWIFT instrument (currently planned to be built by the Canadian Space Agency for launch on ~ 2010).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aerosol Direct Radiative Experiment (ADRIEX) took place over the Adriatic and Black Seas during August and September 2004 with the aim of characterizing anthropogenic aerosol in these regions in terms of its physical and optical properties and establishing its impact on radiative balance. Eight successful flights of the UK BAE-146 Facility for Atmospheric Airborne Measurements were completed together with surface-based lidar and AERONET measurements, in conjunction with satellite overpasses. This paper outlines the motivation for the campaign, the methodology and instruments used, describes the synoptic situation and provides an overview of the key results. ADRIEX successfully measured a range of aerosol conditions across the northern Adriatic, Po Valley and Black Sea. Generally two layers of aerosol were found in the vertical: in the flights over the Black Sea and the Po Valley these showed differences in chemical and microphysical properties, whilst over the Adriatic the layers were often more similar. Nitrate aerosol was found to be important in the Po Valley region. The use of new instruments to measure the aerosol chemistry and mixing state and to use this information in determining optical properties is demonstrated. These results are described in much more detail in the subsequent papers of this special issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband shortwave and longwave radiative fluxes observed both at the surface and from space during the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) experiment in Niamey, Niger, in 2006 are presented. The surface fluxes were measured by the Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMF) at Niamey airport, while the fluxes at the top of the atmosphere (TOA) are from the Geostationary Earth Radiation Budget (GERB) instrument on the Meteosat-8 satellite. The data are analyzed as daily averages, in order to minimize sampling differences between the surface and top of atmosphere instruments, while retaining the synoptic and seasonal changes that are the main focus of this study. A cloud mask is used to identify days with cloud versus those with predominantly clear skies. The influence of temperature, water vapor, aerosols, and clouds is investigated. Aerosols are ubiquitous throughout the year and have a significant impact on both the shortwave and longwave fluxes. The large and systematic seasonal changes in temperature and column integrated water vapor (CWV) through the dry and wet seasons are found to exert strong influences on the longwave fluxes. These influences are often in opposition to each other, because the highest temperatures occur at the end of the dry season when the CWV is lowest, while in the wet season the lowest temperatures are associated with the highest values of CWV. Apart from aerosols, the shortwave fluxes are also affected by clouds and by the seasonal changes in CWV. The fluxes are combined to provide estimates of the divergence of radiation across the atmosphere throughout 2006. The longwave divergence shows a relatively small variation through the year, because of a partial compensation between the seasonal variations in the outgoing longwave radiation (OLR) and surface net longwave radiation. A simple model of the greenhouse effect is used to interpret this result in terms of the dependence of the normalized greenhouse effect at the TOA and of the effective emissivity of the atmosphere at the surface on the CWV. It is shown that, as the CWV increases, the atmosphere loses longwave energy to the surface with about the same increasing efficiency with which it traps the OLR. When combined with the changes in temperature, this maintains the atmospheric longwave divergence within the narrow range that is observed. The shortwave divergence is mainly determined by the CWV and aerosol loadings and the effect of clouds is much smaller than on the component fluxes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3 s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C).