859 resultados para Boundary value problems on manifolds
Resumo:
In this paper, we propose a new numerical modeling method – Convolutional Forsyte Polynomial Differentiator (CFPD), aimed at simulating seismic wave propagation in complex media with high efficiency and accuracy individually owned by short-scheme finite differentiator and general convolutional polynomial method. By adjusting the operator length and optimizing the operator coefficient, both global and local informations can be easily incorporated into the wavefield which is important to invert the undersurface geological structure. The key issue in this paper is to introduce the convolutional differentiator based on Forsyte generalized orthogonal polynomial in mathematics into the spatial differentiation of the first velocity-stress equation. To match the high accuracy of the spatial differentiator, this method in the time coordinate adopts staggered grid finite difference instead of conventional finite difference to model seismic wave propagation in heterogeneous media. To attenuate the reflection artifacts caused by artificial boundary, Perfectly Matched Layer (PML) absorbing boundary is also being considered in the method to deal with boundary problem due to its advantage of automatically handling large-angle emission. The PML formula for acoustic equation and first-order velocity-stress equation are also derived in this paper. There is little difference to implement the PML boundary condition in all kind of wave equations, but in Biot media, special attenuation factors should be taken. Numerical results demonstrate that the PML boundary condition is better than Cerjan absorbing boundary condition which makes it more suitable to hand the artificial boundary reflection. Based on the theories of anisotropy, Biot two-phase media and viscous-elasticity, this paper constructs the constitutive relationship for viscous-elastic and two-phase media, and further derives the first-order velocity-stress equation for 3D viscous-elastic and two-phase media. Numerical modeling using CFPD method is carried out in the above-mentioned media. The results modeled in the viscous-elastic media and the anisotropic pore elastic media can better explain wave phenomena of the true earth media, and can also prove that CFPD is a useful numerical tool to study the wave propagation in complex media.
Resumo:
To pick velocity automatically is not only helpful to improve the efficiency of seismic data process, but also to provide quickly the initial velocity for prestack depth migration. In this thesis, we use the Viterbi algorithm to do automatic picking, but the velocity picked usually is immoderate. By thorough study and analysis, we think that the Viterbi algorithm has the function to do quickly and effectually automatic picking, but the data provided for picking maybe not continuous on derivative of its curved surface, viz., the curved face on velocity spectrum is not slick. Therefore, the velocity picked may include irrational velocity information. To solve the problem above, we develop a new method to filter signal by performing nonlinear transformation of coordinate and filter of function. Here, we call it as Gravity Center Preserved Pulse Compressed Filter (GCPPCF). The main idea to perform the GCPPCF as follows: separating a curve, such as a pulse, to several subsection, calculating the gravity center (coordinate displacement), and then assign the value (density) on the subsection to gravity center. When gravity center departure away from center of its subsection, the value assigned to gravity center is smaller than the actual one, but non other than gravity center anastomoses fully with its subsection center, the assigned value equal to the actual one. By doing so, the curve shape under new coordinate breadthwise narrows down compare to its original one. It is a process of nonlinear transformation of coordinate, due to gravity center changing with the shape of subsection. Furthermore, the gravity function is filter one, because it is a cause of filtering that the value assigned from subsection center to gravity center is obtained by calculating its weight mean of subsetion function. In addition, the filter has the properties of the adaptive time delay changed filter, owing to the weight coefficient used for weight mean also changes with the shape of subsection. In this thesis, the Viterbi algorithm inducted, being applied to auto pick the stack velocity, makes the rule to integral the max velocity spectrum ("energy group") forward and to get the optimal solution in recursion backward. It is a convenient tool to pick automatically velocity. The GCPPCF above not only can be used to preserve the position of peak value and compress the velocity spectrum, but also can be used as adaptive time delay changed filter to smooth object curved line or curved face. We apply it to smooth variable of sequence observed to get a favourable source data ta provide for achieving the final exact resolution. If there is no the adaptive time delay-changed filter to perform optimization, we can't get a finer source data and also can't valid velocity information, moreover, if there is no the Viterbi algorithm to do shortcut searching, we can't pick velocity automatically. Accordingly, combination of both of algorithm is to make an effective method to do automatic picking. We apply the method of automatic picking velocity to do velocity analysis of the wavefield extrapolated. The results calculated show that the imaging effect of deep layer with the wavefield extrapolated was improved dominantly. The GCPPCF above has achieved a good effect in application. It not only can be used to optimize and smooth velocity spectrum, but also can be used to perform a correlated process for other type of signal. The method of automatic picking velocity developed in this thesis has obtained favorable result by applying it to calculate single model, complicated model (Marmousi model) and also the practical data. The results show that it not only has feasibility, but also practicability.
Resumo:
Cooperation is a typical prosocial behavior, and social psychologists have traditionally used sociometric methods to measure cooperation. This research is aimed to explore the development of children’s social value orientation and its impact on cooperation. Study 1 used two-choice decomposed games to measure the social value orientation of 9- , 11-, to 14-year-old children and adults. Results indicated that most 9-, 11-, 14-year-old children are classified as proselfs, and most adults are classified as prosocials. Compared to 9 years, there are more prosocial orientations and less competitive orientations among 11 years. But compared to 11 years, there are less prosocial orientations and more competitive orientations among 14 years. Study 2 used prisoner’s dilemma to assess cooperative behavior, thus investigated the impact of social value orientation on cooperative decision-making. Results indicated that, on one hand, children of prosocial orientation expected no more cooperation from others, but adults of prosocial orientation expected more cooperation from others. On the other hand, prosocials make more cooperative choices than proselfs, and they show more reciprocity towards cooperative others and more altruism towards non-cooperative others.
Resumo:
Transfer of learning is one of the major concepts in educational psychology. As cognitive psychology develops, many researchers have found that transfer plays an important part in problem solving, and the awareness of the similarity of related problems is important in transfer. So they become more interested in researching the problem of transfer. But in the literature of transfer research, it has been found that many researchers do not hold identical conclusions about the influence of awareness of related problems during problem solving transfer. This dissertation is written on the basic of much of sub-research work, such as looking up literature concerning transfer of problem solving research, comparing the results of research work done recently and experimental researches. The author of this dissertation takes middle school students as subjects, geometry as materials, and adopts factorial design in his experiments. The influence of awareness of related problems on problem solving transfer is examined from three dimensions which are the degree of difficulty of transfer problems, the level of awareness of related problems and the characteristics of subjects themselves. Five conclusions have been made after the experimental research: (1) During the process of geometry problem solving, the level of awareness of related problems is one of the major factors that influence the effect of problem solving transfer. (2) Either more difficult or more easy of the transfer problems will hinder the influence of awareness of related problems during problem solving transfer, and the degree of difficulty of the transfer problems have interactions with the level of awareness of related problems in affecting transfer. (3) During geometry problems solving transfer, the level of awareness of related problems has interactions with the degree of student achievement. Compared with the students who have lower achievement, the influence of the level of the awareness is bigger in the students who have higher achievement. (4) There is positive correlation between geometry achievement and reasoning ability of the middle school students. The student who has higher reasoning ability has higher geometry achievement, while the level of awareness is raised, the transfer achievement of both can be raised significantly. (5) There is positive correlation between geometry achievement and cognitive style of the middle school students. The student who has independent field tendency of cognitive style has higher geometry achievement, while the level of awareness is raised, the transfer achievement of both can be raised significantly. At the end of the dissertation, the researcher offers two proposals concerning Geometry teaching on the basis of the research findings.
Resumo:
Mishuris, G; Kuhn, G., (2001) 'Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface', Zeitschrift f?r Angewandte Mathematik und Mechanik 81(12) pp.811-826 RAE2008
Resumo:
Gustavo Chemale, Arjan J. van Rossum, James R. Jefferies, John Barrett, Peter M. Brophy, Henrique B. Ferreira, Arnaldo Zaha (2003). Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3(8), 1633-1636. Sponsorship: CNPq / PADCT/CNPq / FAPERGS (Brazil)/ BBSRC (UK) RAE2008
Resumo:
When people work from home, the domains of home and work are co-located, often under one roof. Home-workers have to cope with the meeting of two practices that have traditionally been physically separated. In light of this, we need to understand: how do people who work from home negotiate the boundaries between their home and work practices? What kinds of boundaries do people construct? How do boundaries affect the relationship between home and work as domains? What kinds of boundaries are available to home-workers? Are home-workers in charge of their boundaries or do they co-create them with others? How does this position home-workers in their domains? In order to address these questions, I analysed a variety of data, including newspaper columns, online forum discussions, interviews, and personal diary entries, using a discourse analytic approach that lends itself to issues of positioning. Current literature clashes over whether home-workers are in control of their boundaries, and over the relationship between home and work that arises out of boundary negotiations, i.e. whether home and work are dichotomous or layered. I seek to contribute to boundary theory by adopting a practice theory stance (Wenger, 1998) to guide my analysis. By viewing home and work as practices, I show that boundary negotiations depend on how home-workers are positioned, e.g. if they are positioned as peripheral in a domain, they lack influence over boundaries. I demonstrate that home and work constitute a number of different practices, rather than a rigid dichotomy, and that the way home and work are related are not the same for all home-workers. The application of practice concepts further shows how relationships between practices are created. The contribution of this work is a reconceptualisation of current boundary theory away from individual and cognitive notions (Nippert-Eng, 1996) into the realm of positioning.
Resumo:
CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.
Resumo:
The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride-based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)-based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values
Resumo:
Axisymmetric consolidation is a classical boundary value problem for geotechnical engineers. Under some circumstances an analysis in which the changes in pore pressure, effective stress and displacement can be uncoupled from each other is sufficient, leading to a Terzaghi formulation of the axisymmetric consolidation equation in terms of the pore pressure. However, representation of the Mandel-Cryer effect usually requires more complex, coupled, Biot formulations. A new coupled formulation for the plane strain, axisymmetric consolidation problem is presented for small, linear elastic deformations. A single, easily evaluated parameter couples changes in pore pressure to changes in effective stress, and the resulting differential equation for pore pressure dissipation is very similar to Terzaghi’s classic formulation. The governing equations are then solved using finite differences and the consolidation of a solid infinite cylinder analysed, calculating the variation with time and with radius of the excess pore pressure and the radial displacement. Comparison with a previously published semi-analytical solution indicates that the formulation successfully embodies the Mandel-Cryer effect.
Resumo:
The HSP90 chaperone and immunophilin FKBPL is an estrogen-responsive gene that interacts with estogen receptor a (ERa) and regulates its levels. In this study, we explored the effects of FKBPL on breast cancer proliferation. Breast cancer cells stably overexpressing FKBPL became dependent on estrogen for their growth and were dramatically more sensitive to the antiestrogens tamoxifen and fulvestrant, whereas FKBPL knockdown reverses this phenotype. FKBPL knockdown also decreased the levels of the cell cycle inhibitor p21WAF1 and increased ERa phosphorylation on Ser118 in response to 17ß-estradiol and tamoxifen. In support of the likelihood that these effects explained FKBPL-mediated cell growth inhibition and sensitivity to endocrine therapies, FKBPL expression was correlated with increased overall survival and distant metastasis-free survival in breast cancer patients. Our findings suggest that FKBPL may have prognostic value based on its impact on tumor proliferative capacity and sensitivity to endocrine therapies, which improve outcome.
Resumo:
A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.
Resumo:
Purpose: The purpose of this paper is to engage a different notion of feminism in accounting by addressing the issues of feminism, balance, and integration as a means of understanding differently the world for which one accounts. The ideas are communicated by the sharing of experiences through myth and storytelling.
Design/methodology/approach: An alternative lens for understanding the giving of accounts is proposed, drawing on earlier feminist accounting literature as well as storytelling and myth.
Findings: Including the subjective and intersubjective approaches to experiencing and understanding the world recommends an approach whereby both the feminine-intuitive and the masculine-rational processes are integrated in constructing decision models and accounts.
Research limitations/implications: Through an expanded view of values that can be included in reporting or recounting a different model is seen, and different decisions are enabled. The primary limitation is having to use words to convey one’s subjective and intersubjective understandings. The written medium is not the most natural language for such an undertaking.
Practical implications: By enabling the inclusion of more feminine values, a way is opened to engage more holistically with the society in which decisions are embedded.
Originality/value: Drawing on the storytelling tradition, a holistic model is suggested that can lead to emergence of a more balanced societal reporting.
Keywords: Feminism, Integration, Accounting, Storytelling, Myths
Paper type: Research paper
Resumo:
A self-tuning filter is disclosed. The self-tuning filter includes a digital clocking signal and an input coupled to the digital clocking signal, whereby the input reads a value incident on the input when the digital clocking signal changes to a predetermined state. A clock-tunable filter is, furthermore, coupled to the digital clocking signal so that the frequency of the clock-tunable filter is adjusted in relation to a sampling frequency at which the digital clocking signal operates. The self-tuning filter may be applied to an input of a data acquisition unit and applied to an input having a variable sampling frequency. A method of controlling the frequency of a clock-tunable filter is also disclosed.
Resumo:
This paper explores the roles of science and market devices in the commodification of ‘nature’ and the configuration of flows of speculative capital. It focuses on mineral prospecting and the market for shares in ‘junior’ mining companies. In recent years these companies have expanded the reach of their exploration activities overseas, taking advantage of innovations in exploration methodologies and the liberalisation of fiscal and property regimes in ‘emerging’ mineral rich developing countries. Recent literature has explored how the reconfiguration of notions of ‘risk’ has structured the uneven distribution of rents. It is increasingly evident that neoliberal framing of environmental, political, social and economic risks has set in motion overflows that multinational mining capital had not bargained for (e.g. nationalisation, violence and political resistance). However, the role of ‘geological risk’ in animating flows of mining finance is often assumed as a ‘technical’ given. Yet geological knowledge claims, translated locally, designed to travel globally, assemble heterogeneous elements within distanciated regimes of metrology, valuation and commodity production. This paper explores how knowledge of nature is enrolled within systems of property relations, focusing on the genealogy of the knowledge practices that animate contemporary circuits of speculative mining finance. It argues that the financing of mineral prospecting mobilises pragmatic and situated forms of knowledge rather than actuarially driven calculations that promise predictability. A Canadian public enquiry struck in the wake of scandal associated with Bre-X’s prospecting activities in Indonesia is used to glean insights into the ways in which the construction of a system of public warrant to underpin financial speculation is predicated upon particular subjectivities and the outworking of everyday practices and struggles over ‘value’. Reflection on practical investments in processes of standardisation, rituals of verification and systems of accreditation reveal much about how the materiality of things shape the ways in which regional and global financial circuits are integrated, selectively transforming existing social relations and forms of knowledge production.