617 resultados para Borel-Leroy summability
Resumo:
∗ Supported by D.G.I.C.Y.T. Project No. PB93-1142
Resumo:
Here we prove results about Riesz summability of classical Laguerre series, locally uniformly or on the Lebesgue set of the function f such that (∫(1 + x)^(mp) |f(x)|^p dx )^(1/p) < ∞, for some p and m satisfying 1 ≤ p ≤ ∞, −∞ < m < ∞.
Resumo:
The main concern of this paper is to present some improvements to results on the existence or non-existence of countably additive Borel measures that are not Radon measures on Banach spaces taken with their weak topologies, on the standard axioms (ZFC) of set-theory. However, to put the results in perspective we shall need to say something about consistency results concerning measurable cardinals.
Resumo:
2000 Mathematics Subject Classification: 54H05, 03E15, 46B26
Resumo:
2000 Mathematics Subject Classification: 62J05, 62G35
Resumo:
2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.
Resumo:
2000 Mathematics Subject Classification: Primary: 42A05. Secondary: 42A82, 11N05.
Resumo:
2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A36.
Resumo:
We prove that a random Hilbert scheme that parametrizes the closed subschemes with a fixed Hilbert polynomial in some projective space is irreducible and nonsingular with probability greater than $0.5$. To consider the set of nonempty Hilbert schemes as a probability space, we transform this set into a disjoint union of infinite binary trees, reinterpreting Macaulay's classification of admissible Hilbert polynomials. Choosing discrete probability distributions with infinite support on the trees establishes our notion of random Hilbert schemes. To bound the probability that random Hilbert schemes are irreducible and nonsingular, we show that at least half of the vertices in the binary trees correspond to Hilbert schemes with unique Borel-fixed points.