976 resultados para Bone Diseases, Metabolic
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
SHED (stem cells from human exfoliated deciduous teeth) represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.
Resumo:
The aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass®45S5 implants used as control. Ceramic glass Biosilicate and Bioglass®45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites. Bone and a layer of soft tissue were observed in close contact with the implant surfaces in the medullary canal. The connective tissue presented few elongated cells and collagen fibers located parallel to implant surface. Cortical portion after 8 weeks was the only area that demonstrated significant difference between all tested materials, with Biosilicate 1F and Biosilicate 2F presenting higher bone formation than Bioglass®45S5 and Biosilicate® vitreo (p=0.02). All other areas and periods were statistically non-significant (p>0.05). In conclusion, all tested materials were considered biocompatible, demonstrating surface bone formation and a satisfactory behavior at biological environment.
Resumo:
It has recently been reported that machined and microrough (micro) Brazilian titanium (Ti) implants have good production standards. The aim of this study was to evaluate in vivo bone formation around 2 different implant surfaces placed in dog's mandible. Thirty-two screw-typed Ti implants were used in this study. Mandibular premolars were extracted in 8 dogs and, after 12 weeks, 2 machined (Neodent Titamax, Brazil) and 2 micro implants (Neodent Titamax Porous, Brazil) were placed in each animal. Biopsies were taken at 3 and 8 weeks post-implantation and stained with Stevenel's blue and Alizarin red for histomorphometric measurements of bone-to-implant contact (BIC), bone area between threads (BABT) and bone area within the mirror area (BAMA). Data were analyzed statistically by two-way ANOVA (α=0.05). While at 3 weeks micro implants exhibited significantly more BIC than machined ones (55 ± 12.5% and 35.6 ± 15%, p<0.05), no significant difference in such parameter was detected at 8 weeks (51.2 ± 21% and 48.6 ± 18.1%, p>0.05). There were no significant differences in BABT and BAMA between the implants. Micro surfaces promoted higher contact osteogenesis. These data indicate that this commercial micro Ti implant surface enhances contact osteogenesis at an early post-implantation period when compared to the machined one.
Resumo:
The aim of this study was to quantify radiographically the periapical bone resorption in dogs' teeth contaminated with bacterial endotoxin (LPS), associated or not with calcium hydroxide. After pulp tissue removal, 60 premolars were randomly assigned to 4 groups and were either filled with LPS (group 1), filled with LPS plus calcium hydroxide (group 2) or filled with saline (group 3) for a period of 30 days. In group 4, periapical lesion formation was induced with no canal treatment. Standardized radiographs were taken at the beginning of the treatment and after 30 days and the Image J Program was used for measurement of periapical lesion size. Periapical lesions were observed in groups 1 (average of 8.44 mm2) and 4 (average of 3.02 mm2). The lamina dura was intact and there were no areas of periapical bone resorption in groups 2 and 3. It may be concluded that calcium hydroxide was effective in inactivating LPS, as demonstrated by the absence of apical periodontitis in the roots that were filled with bacterial endotoxin plus calcium hydroxide.
Resumo:
The aim of this study was to evaluate in situ changes in the alveolar crest bone height around immediate implant-supported crowns in comparison to tooth-supported crowns (control) with the cervical margins located at the bone crest level, without occlusal load. In Group I, after extraction of 12 mandibular premolars from 4 adult dogs, implants from Branemark System (MK III TiU RP 4.0 x 11.5 mm) were placed to retain complete acrylic crowns. In Group II, premolars were prepared to receive complete metal crowns. Sixteen weeks after placement of the crowns (38 weeks after tooth extraction), the height of the alveolar bone crest was measured with a digital caliper. Data were analyzed statistically by the Mann-Whitney test at 5% significance level. The in situ analysis showed no statistically significant difference (p=0.880) between the implant-supported and the tooth-supported groups (1.528 + 0.459 mm and 1.570 + 0.263 mm, respectively). Based on the findings of the present study, it may be concluded that initial peri-implant bone loss may result from the remodeling process necessary to establish the biological space, similar to which occurs with tooth-supported crowns.
Resumo:
Caffeine induces loss of calcium and influences the normal development of bone. This study investigated the effects of coffee on bone metabolism in rats by biochemical measurement of calcium, bone densitometry and histometry. Male rats, born of female treated daily with coffee and with coffee intake since born, were anesthetized, subjected to extraction of the upper right incisor, and sacrificed 7, 21 and 42 days after surgery. Blood and urine samples were taken, and their maxilla radiographed and processed to obtain 5-µm-thick semi-serial sections stained with hematoxylin and eosin. The volume and bone quality were estimated using an image-analysis software. The results showed significantly greater amount of calcium in the plasma (9.40 ± 1.73 versus 9.80 ± 2.05 mg%) and urine (1.00 ± 0.50 versus 1.25 ± 0.70 mg/24 h) and significantly less amount in bone (90.0 ± 1.94 versus 86.0 ± 2.12 mg/mg bone), reduced bone mineral density (1.05 ± 0.11 versus 0.65 ± 0.15 mmAL), and lower amount of bone (76.19 ± 1.6 versus 53.41 ± 2.1 %) (ANOVA; p≤0.01) in animals treated with coffee sacrificed after 42 days. It may be concluded that coffee/caffeine intake caused serious adverse effects on calcium metabolism in rats, including increased levels of calcium in the urine and plasma, decreased bone mineral density and lower volume of bone, thus delaying the bone repair process.
Resumo:
Prostaglandins control osteoblastic and osteoclastic function under physiological or pathological conditions and are important modulators of the bone healing process. The non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and consequently prostaglandins synthesis. Experimental and clinical evidence has indicated a risk for reparative bone formation related to the use of non-selective (COX-1 and COX-2) and COX-2 selective NSAIDs. Ketorolac is a non-selective NSAID which, at low doses, has a preferential COX-1 inhibitory effect and etoricoxib is a new selective COX-2 inhibitor. Although literature data have suggested that ketorolac can interfere negatively with long bone fracture healing, there seems to be no study associating etoricoxib with reparative bone formation. Paracetamol/acetaminophen, one of the first choices for pain control in clinical dentistry, has been considered a weak anti-inflammatory drug, although supposedly capable of inhibiting COX-2 activity in inflammatory sites. OBJECTIVE: The purpose of the present study was to investigate whether paracetamol, ketorolac and etoricoxib can hinder alveolar bone formation, taking the filling of rat extraction socket with newly formed bone as experimental model. MATERIAL AND METHODS: The degree of new bone formation inside the alveolar socket was estimated two weeks after tooth extraction by a differential point-counting method, using an optical microscopy with a digital camera for image capture and histometry software. Differences between groups were analyzed by ANOVA after confirming a normal distribution of sample data. RESULTS AND CONCLUSIONS: Histometric results confirmed that none of the tested drugs had a detrimental effect in the volume fraction of bone trabeculae formed inside the alveolar socket.
Resumo:
Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group) or tap water (control group) ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01). Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.
Resumo:
This study evaluated bone response to a Ca- and P- enriched titanium (Ti) surface treated by a multiphase anodic spark deposition coating (BSP-AK). Two mongrel dogs received bilateral implantation of 3 Ti cylinders (4.1 x 12 mm) in the humerus, being either BSP-AK treated or untreated (machined - control). At 8 weeks postimplantation, bone fragments containing the implants were harvested and processed for histologic and histomorphometric analyses. Bone formation was observed in cortical area and towards the medullary canal associated to approximately 1/3 of implant extension. In most cases, in the medullary area, collagen fiber bundles were detected adjacent and oriented parallel to Ti surfaces. Such connective tissue formation exhibited focal areas of mineralized matrix lined by active osteoblasts. The mean percentages of bone-to-implant contact were 2.3 (0.0-7.2 range) for BSP-AK and 0.4 (0.0-1.3 range) for control. Although the Mann-Whitney test did not detect statistically significant differences between groups, these results indicate a trend of BSP-AK treated surfaces to support contact osteogenesis in an experimental model that produces low bone-to-implant contact values.
Resumo:
Conventional radiography has shown limitation in acquiring image of the ATM region, thus, computed tomography (CT) scanning has been the best option to the present date for diagnosis, surgical planning and treatment of bone lesions, owing to its specific properties. OBJECTIVE: The aim of the study was to evaluate images of simulated bone lesions at the head of the mandible by multislice CT. MATERIAL AND METHODS: Spherical lesions were made with dental spherical drills (sizes 1, 3, and 6) and were evaluated by using multislice CT (64 rows), by two observers in two different occasions, deploying two protocols: axial, coronal, and sagittal images, and parasagittal images for pole visualization (anterior, lateral, posterior, medial and superior). Acquired images were then compared with those lesions in the dry mandible (gold standard) to evaluate the specificity and sensibility of both protocols. Statistical methods included: Kappa statistics, validity test and chi-square test. Results demonstrated the advantage of associating axial, coronal, and sagittal slices with parasagittal slices for lesion detection at the head of the mandible. RESULTS: There was no statistically significant difference between the types of protocols regarding a particular localization of lesions at the poles. CONCLUSIONS: Protocols for the assessment of the head of the mandible were established to improve the visualization of alterations of each of the poles of the mandible's head. The anterior and posterior poles were better visualized in lateral-medial planes while lateral, medial and superior poles were better visualized in the anterior-posterior plane.
Resumo:
There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis.
Resumo:
Os bisfosfonatos são um grupo de medicamentos utilizados no tratamento de doenças malignas metastáticas e em outras doenças ósseas como osteoporose e doença de Paget. A despeito dos seus benefícios, uma importante complicação denominada de osteonecrose dos maxilares vem sendo observada nos pacientes usuários crônicos dos bisfosfonatos que se caracteriza clinicamente por exposições ósseas na região maxilofacial persistente, acompanhadas de osteomielite, geralmente sintomáticas e cujo tratamento é complexo. Este estudo tem por objetivo revisar a literatura sobre a osteonecrose associada ao uso dos bisfosfonatos, em especial, em oncologia, no período de 2003 a 2008. Serão apresentados e discutidos os fatores de risco, aspectos etiopatogênicos, clínicos, imagenológicos, terapêuticos e preventivos desta doença. Devido à dificuldade de tratamento da osteonecrose associada aos bisfosfonatos, o foco deve ser a prevenção, sendo o ideal a eliminação de quadros infecciosos orais antes da terapia com os bisfosfonatos ter sido iniciada e minimizar traumas em boca após o uso destes medicamentos.
Resumo:
PURPOSE: To quantify the amount of bone formation in the calvarial region of Wistar rats after craniotomy using bone wax as a haemostatic agent. METHODS: Surgery to produce bilateral, symmetric, full-thickness cranial defects (area: 18 mm²) was performed in eight animals. The right side of the cranium remained open and the edges of the left side osseous defect was covered with bone wax. Calvaria were imaged immediately after surgery and 12 weeks postoperatively by computerized tomography. The areas of the bone defects were measured in three-dimensional images using Magics 13.0 (Materialise-Belgic, software CAD). RESULTS: The average amount of bone formation on the left and right side respectively was 4.85 mm² and 8.16 mm². Statistically significant differences between the amount of bone formation on the left and right sides were seen. CONCLUSIONS: Bone wax significantly diminishes the rate of bone formation in calvarial defects in a rat model.