967 resultados para Bivariate Lifetime Data
Resumo:
Driving on an approach to a signalized intersection while distracted is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. Given the prevalence and importance of this particular scenario, the decisions and actions of distracted drivers during the onset of yellow lights are the focus of this study. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of Iowa - National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examination has been conducted from a traditional regression-based approach, which does not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that novice (16-17 years) and young drivers’ (18-25 years) have heightened yellow light running risk while distracted by a cell phone conversation. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Overall, distracted drivers across most tested groups tend to reduce the propensity of yellow light running as the distance to stop line increases, exhibiting risk compensation on a critical driving situation.
Resumo:
Purpose In this study we examine neuroretinal function in five amblyopes, who had been shown in previous functional MRI (fMRI) studies to have compromised function of the lateral geniculate nucleus (LGN), to determine if the fMRI deficit in amblyopia may have its origin at the retinal level. Methods We used slow flash multifocal ERG (mfERG) and compared averaged five ring responses of the amblyopic and fellow eyes across a 35 deg field. Central responses were also assessed over a field which was about 6.3 deg in diameter. We measured central retinal thickness using optical coherence tomography. Central fields were measured using the MP1-Microperimeter which also assesses ocular fixation during perimetry. MfERG data were compared with fMRI results from a previous study. Results Amblyopic eyes had reduced response density amplitudes (first major negative to first positive (N1-P1) responses) for the central and paracentral retina (up to 18 deg diameter) but not for the mid-periphery (from 18 to 35 deg). Retinal thickness was within normal limits for all eyes, and not different between amblyopic and fellow eyes. Fixation was maintained within the central 4° more than 80% of the time by four of the five participants; fixation assessed using bivariate contour ellipse areas (BCEA) gave rankings similar to those of the MP-1 system. There was no significant relationship between BCEA and mfERG response for either amblyopic or fellow eye. There was no significant relationship between the central mfERG eye response difference and the selective blood oxygen level dependent (BOLD) LGN eye response difference previously seen in these participants. Conclusions Retinal responses in amblyopes can be reduced within the central field without an obvious anatomical basis. Additionally, this retinal deficit may not be the reason why the LGN BOLD (blood oxygen level dependent) responses are reduced for amblyopic eye stimulation.
Resumo:
A routine activity for a sports dietitian is to estimate energy and nutrient intake from an athlete's self-reported food intake. Decisions made by the dietitian when coding a food record are a source of variability in the data. The aim of the present study was to determine the variability in estimation of the daily energy and key nutrient intakes of elite athletes, when experienced coders analyzed the same food record using the same database and software package. Seven-day food records from a dietary survey of athletes in the 1996 Australian Olympic team were randomly selected to provide 13 sets of records, each set representing the self-reported food intake of an endurance, team, weight restricted, and sprint/power athlete. Each set was coded by 3-5 members of Sports Dietitians Australia, making a total of 52 athletes, 53 dietitians, and 1456 athlete-days of data. We estimated within- and between- athlete and dietitian variances for each dietary nutrient using mixed modeling, and we combined the variances to express variability as a coefficient of variation (typical variation as a percent of the mean). Variability in the mean of 7-day estimates of a nutrient was 2- to 3-fold less than that of a single day. The variability contributed by the coder was less than the true athlete variability for a 1-day record but was of similar magnitude for a 7-day record. The most variable nutrients (e.g., vitamin C, vitamin A, cholesterol) had approximately 3-fold more variability than least variable nutrients (e.g., energy, carbohydrate, magnesium). These athlete and coder variabilities need to be taken into account in dietary assessment of athletes for counseling and research.
Resumo:
This paper describes an innovative platform that facilitates the collection of objective safety data around occurrences at railway level crossings using data sources including forward-facing video, telemetry from trains and geo-referenced asset and survey data. This platform is being developed with support by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper provides a description of the underlying accident causation model, the development methodology and refinement process as well as a description of the data collection platform. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
The Geothermal industry in Australia and Queensland is in its infancy and for hot dry rock (HDR) geothermal energy, it is very much in the target identification and resource definition stages. As a key effort to assist the geothermal industry and exploration for HDR in Queensland, we are developing a comprehensive and new integrated geochemical and geochronological database on igneous rocks. To date, around 18,000 igneous rocks have been analysed across Queensland for chemical and/or age information. However, these data currently reside in a number of disparate datasets (e.g., Ozchron, Champion et al., 2007, Geological Survey of Queensland, journal publications, and unpublished university theses). The goal of this project is to collate and integrate these data on Queensland igneous rocks to improve our understanding of high heat producing granites in Queensland, in terms of their distribution (particularly in the subsurface), dimensions, ages, and controlling factors in their genesis.
Resumo:
Confusion exists as to the age of the Abor Volcanics of NE India. Some consider the unit to have been emplaced in the Early Permian, others the Early Eocene, a difference of ∼230 million years. The divergence in opinion is significant because fundamentally different models explaining the geotectonic evolution of India depend on the age designation of the unit. Paleomagnetic data reported here from several exposures in the type locality of the formation in the lower Siang Valley indicate that steep dipping primary magnetizations (mean = 72.7 ± 6.2°, equating to a paleo-latitude of 58.1°) are recorded in the formation. These are only consistent with the unit being of Permian age, possibly Artinskian based on a magnetostratigraphic argument. Plate tectonic models for this time consistently show the NE corner of the sub-continent >50°S; in the Early Eocene it was just north of the equator, which would have resulted in the unit recording shallow directions. The mean declination is counter-clockwise rotated by ∼94°, around half of which can be related to the motion of the Indian block; the remainder is likely due local Himalayan-age thrusting in the Eastern Syntaxis. Several workers have correlated the Abor Volcanics with broadly coeval mafic volcanic suites in Oman, NE Pakistan–NW India and southern Tibet–Nepal, which developed in response to the Cimmerian block peeling-off eastern Gondwana in the Early-Middle Permian, but we believe there are problems with this model. Instead, we suggest that the Abor basalts relate to India–Antarctica/India–Australia extension that was happening at about the same time. Such an explanation best accommodates the relevant stratigraphical and structural data (present-day position within the Himalayan thrust stack), as well as the plate tectonic model for Permian eastern Gondwana.
Resumo:
Background: As an increasing number of Taiwanese people live out the final stages of their lives with chronic and complex conditions. Care decisions at the end of life can also be complex, overwhelming and stressful for an individual, family and health professionals. Understanding individuals’ wishes for end-of-life care and factors which influence individuals' decisions is important so that the provision of quality end-of-life care for all can be promoted and ensured.
Resumo:
Travel time in an important transport performance indicator. Different modes of transport (buses and cars) have different mechanical and operational characteristics, resulting in significantly different travel behaviours and complexities in multimodal travel time estimation on urban networks. This paper explores the relationship between bus and car travel time on urban networks by utilising the empirical Bluetooth and Bus Vehicle Identification data from Brisbane. The technologies and issues behind the two datasets are studied. After cleaning the data to remove outliers, the relationship between not-in-service bus and car travel time and the relationship between in-service bus and car travel time are discussed. The travel time estimation models reveal that the not-in-service bus travel time are similar to the car travel time and the in-service bus travel time could be used to estimate car travel time during off-peak hours
Resumo:
Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.
Resumo:
Research Question: What relationships exist between general self efficacy, locus of control and the nursing practice environment and caring efficacy and job satisfaction? Background: Important characteristics of current nursing practice include nurses having the ability to develop and continue therapeutic relationships with patients, nurses having autonomy and control over the practice environment and nurses having more involvement in decision making. In addition, employee satisfaction is enhanced when organisations offer access to authority. Despite this, nurses continue to complain of feeling powerless in their ability to make decisions. Sample: The study population and criteria for selection included Registered Nurses in Australia who were at the time members of an Australian professional and industrial organisation. Methods: A cross-sectional survey was undertaken. Data analysis was conducted using descriptive and bivariate statistics, and structural equation modeling. Results: The model fit the data well (χ² = 2.3594, χ²/df = 2.3594 and CFI = 0.9987). Twenty four percent of variation in caring efficacy (CE) can be accounted for by general self-efficacy (GSE); work locus of control (WLC) and practice environment (PE) and 62% of the variation in job satisfaction (JS) can be accounted for by GSE, WLC and PE. All pathways were found to be significant except PE to CE. GSE positively explained CE (β = 0.38). WLC was negatively related to CE i.e., as CE scores increased WLC scores decreased (β = -0.23). Further testing of the model found CE was positively related to GSE (βZ = 0.38, p < 0.001) and negatively related to WLC (βZ = - 0.23, p = 0.001). PE was not significantly associated with CE (βZ = - 0.01, p = 0.85). JS was explained by PE, which was positively related (βZ = 0.69, p = < 0.001); GSE which was negatively related (βZ - 0 .09, p < 0.001) and WLC, which was also negatively related (βZ = - 0.20, p < 0.001). Implications for Practice Nursing and organisational leaders should ensure the development of strategies for professional development and orientation programmes which may enhance nurses’ ability to develop caring relationships and express caring behaviours to their patients and as a result improve organisational and patient outcomes. Nursing shortages and turnover rates are associated with job satisfaction and the nursing practice environment. Improving the nursing environment can produce benefits to the health system such as better job satisfaction, improved workforce retention and better patient outcomes.
Resumo:
Research Question: What relationships exist between general self efficacy, locus of control and the nursing practice environment and caring efficacy and job satisfaction? Background: Important characteristics of current nursing practice include nurses having the ability to develop and continue therapeutic relationships with patients, nurses having autonomy and control over the practice environment and nurses having more involvement in decision making. In addition, employee satisfaction is enhanced when organisations offer access to authority. Despite this, nurses continue to complain of feeling powerless in their ability to make decisions. Sample: The study population and criteria for selection included Registered Nurses in Australia who were at the time members of an Australian professional and industrial organisation. Methods: A cross-sectional survey was undertaken. Data analysis was conducted using descriptive and bivariate statistics, and structural equation modelling. Results: The model fit the data well (χ² = 2.3594, χ²/df = 2.3594 and CFI = 0.9987). Twenty four percent of variation in caring efficacy (CE) can be accounted for by general self-efficacy (GSE); work locus of control (WLC) and practice environment (PE) and 62% of the variation in job satisfaction (JS) can be accounted for by GSE, WLC and PE. All pathways were found to be significant except PE to CE. GSE positively explained CE (β = 0.38). WLC was negatively related to CE i.e., as CE scores increased WLC scores decreased (β = -0.23). Further testing of the model found CE was positively related to GSE (βZ = 0.38, p < 0.001) and negatively related to WLC (βZ = - 0.23, p = 0.001). PE was not significantly associated with CE (βZ = - 0.01, p = 0.85). JS was explained by PE, which was positively related (βZ = 0.69, p = < 0.001); GSE which was negatively related (βZ - 0 .09, p < 0.001) and WLC, which was also negatively related (βZ = - 0.20, p < 0.001). Implications for Practice Nursing and organisational leaders should ensure the development of strategies for professional development and orientation programmes which may enhance nurses’ ability to develop caring relationships and express caring behaviours to their patients and as a result improve organisational and patient outcomes. Nursing shortages and turnover rates are associated with job satisfaction and the nursing practice environment. Improving the nursing environment can produce benefits to the health system such as better job satisfaction, improved workforce retention and better patient outcomes.
Resumo:
Big data is big news in almost every sector including crisis communication. However, not everyone has access to big data and even if we have access to big data, we often do not have necessary tools to analyze and cross reference such a large data set. Therefore this paper looks at patterns in small data sets that we have ability to collect with our current tools to understand if we can find actionable information from what we already have. We have analyzed 164390 tweets collected during 2011 earthquake to find out what type of location specific information people mention in their tweet and when do they talk about that. Based on our analysis we find that even a small data set that has far less data than a big data set can be useful to find priority disaster specific areas quickly.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.