998 resultados para Biological warfare.
Resumo:
The title compound, N'-(4-methoxybenzylidene)-2-(1H-1,2,4-triazol-1-yl)acetohydrazide, was synthesized and its structure was confirmed by means of IR, MS,H-1 NMR and elemental analysis. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound has a low antifungal activity.
Resumo:
AIM: Fourteen urinary nucleosides, primary degradation products of tRNA, were evaluated to know the potential as biological markers for patients with colorectal cancer.
Resumo:
The increasing aging of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the aging process which in turn contributes to metabolic alterations, multi-organ damage, and a systemic pro-inflammatory state ('inflammaging'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal aging process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated aging related to obesity and adipose tissue dysfunction is critical to gain insight into the aging process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between aging and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Resumo:
Depression is a major medical and social problem. Here we review current body of knowledge on the benefits of exercise as an effective strategy for both the prevention and treatment of this condition. We also analyze the biological pathways involved in such potential benefits, which include changes in neurotrophic factors, oxidative stress and inflammation, telomere length, brain volume and microvessels, neurotransmitters or hormones. We also identify major caveats in this field of research: further studies are needed to identify which are the most appropriate types of exercise interventions (intensity, duration, or frequency) to treat and prevent depression.
Resumo:
Enot, D. P., Beckmann, M., Overy, D., Draper, J. (2006). Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proceedings of the National Academy of Sciences of the USA, 103(40), 14865-14870. Sponsorship: BBSRC RAE2008
Resumo:
El nucleopoliedrovirus de Spodoptera exigua (SeMNPV) es un patógeno natural de las poblaciones larvarias de S. exigua que constituye la base de un bioinsecticida comercializado en España para el control biológico de esta plaga en pimiento. Recientes estudios han demostrado que la transmisión del virus a la descendencia (transmisión vertical) se da con frecuencia y podría ser una característica deseable para su uso en aplicaciones de campo. En el presente trabajo se discute la conveniencia de utilizar una mezcla de dos genotipos SeAl1 (transmisión vertical) y SeG25 (transmisión horizontal) en determinadas proporciones para mejorar las características que cada uno de ellos presenta por separado y así explotar cada una de las vías de transmisión. La patogenicidad (CL50) del genotipo SeG25, y de cualquiera de las mezclas que contienen un 25, 50 o 75 % del mismo, fue más alta que la del aislado SeAl1. Sin embargo, en términos de virulencia (TMM) y productividad (OBs/larva) no se observaron diferencias significativas entre genotipos ni entre sus mezclas. Además se evaluó la capacidad de producir infecciones encubiertas de cada genotipo y sus mezclas sometiendo larvas de S. exigua a infecciones subletales del virus. Se encontraron transcritos del virus para el gen temprano ie0 mediante RT-PCR en los adultos supervivientes a infecciones provocadas por el genotipo SeG25 y todas las mezclas. También se testaron otros dos genes virales que se expresan de manera temprana y tardía en la infección de baculovirus (DNA-polimerasa y polihedrina) para los que en ningún caso se detectaron transcritos.
Resumo:
This paper attempts two tasks. First, it sketches how the natural sciences (including especially the biological sciences), the social sciences, and the scientific study of religion can be understood to furnish complementary, consonant perspectives on human beings and human groups. This suggests that it is possible to speak of a modern secular interpretation of humanity (MSIH) to which these perspectives contribute (though not without tensions). MSIH is not a comprehensive interpretation of human beings, if only because it adopts a posture of neutrality with regard to the reality of religious objects and the truth of theological claims about them. MSIH is certainly an impressively forceful interpretation, however, and it needs to be reckoned with by any perspective on human life that seeks to insert its truth claims into the arena of public debate. Second, the paper considers two challenges that MSIH poses to specifically theological interpretations of human beings. On the one hand, in spite of its posture of religious neutrality, MSIH is a key element in a class of wider, seemingly antireligious interpretations of humanity, including especially projectionist and illusionist critiques of religion. It is consonance with MSIH that makes these critiques such formidable competitors for traditional theological interpretations of human beings. On the other hand, and taking the religiously neutral posture of MSIH at face value, theological accounts of humanity that seek to coordinate the insights of MSIH with positive religious visions of human life must find ways to overcome or manage such dissonance as arises. The goal of synthesis is defended as important, and strategies for managing these challenges, especially in light of the pluralism of extant philosophical and theological interpretations of human beings, are advocated.
Resumo:
An extension to the Boundary Contour System model is proposed to account for boundary completion through vertices with arbitrary numbers of orientations, in a manner consistent with psychophysical observartions, by way of harmonic resonance in a neural architecture.
Resumo:
An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.
Resumo:
The proposed model, called the combinatorial and competitive spatio-temporal memory or CCSTM, provides an elegant solution to the general problem of having to store and recall spatio-temporal patterns in which states or sequences of states can recur in various contexts. For example, fig. 1 shows two state sequences that have a common subsequence, C and D. The CCSTM assumes that any state has a distributed representation as a collection of features. Each feature has an associated competitive module (CM) containing K cells. On any given occurrence of a particular feature, A, exactly one of the cells in CMA will be chosen to represent it. It is the particular set of cells active on the previous time step that determines which cells are chosen to represent instances of their associated features on the current time step. If we assume that typically S features are active in any state then any state has K^S different neural representations. This huge space of possible neural representations of any state is what underlies the model's ability to store and recall numerous context-sensitive state sequences. The purpose of this paper is simply to describe this mechanism.
Resumo:
A neural network model of 3-D visual perception and figure-ground separation by visual cortex is introduced. The theory provides a unified explanation of how a 2-D image may generate a 3-D percept; how figures pop-out from cluttered backgrounds; how spatially sparse disparity cues can generate continuous surface representations at different perceived depths; how representations of occluded regions can be completed and recognized without usually being seen; how occluded regions can sometimes be seen during percepts of transparency; how high spatial frequency parts of an image may appear closer than low spatial frequency parts; how sharp targets are detected better against a figure and blurred targets are detector better against a background; how low spatial frequency parts of an image may be fused while high spatial frequency parts are rivalrous; how sparse blue cones can generate vivid blue surface percepts; how 3-D neon color spreading, visual phantoms, and tissue contrast percepts are generated; how conjunctions of color-and-depth may rapidly pop-out during visual search. These explanations arise derived from an ecological analysis of how monocularly viewed parts of an image inherit the appropriate depth from contiguous binocularly viewed parts, as during DaVinci stereopsis. The model predicts the functional role and ordering of multiple interactions within and between the two parvocellular processing streams that join LGN to prestriate area V4. Interactions from cells representing larger scales and disparities to cells representing smaller scales and disparities are of particular importance.
Resumo:
The research work in this thesis included the sensitive and selective separation of biological substance by capillary electrophoresis with a boron doped diamond electrode for amperometric detection. Chapter 1 introduced the capillary electrophoresis and electrochemical detection. It included the different modes of capillary electrophoresis, polyelectrolyte multilayers coating for open tubular capillary electrochromatography, different modes of electrochemical detection and carbon based electrodes. Chapter 2 showed the synthesized and electropolymerized N-acetyltyramine with a negatively charged sulfobutylether-β-cyclodextrin on a boron doped diamond (BDD) electrode followed by the electropolymerzation of pyrrole to form a stable and permselective film for selective dopamine detection. For comparison, a glassy carbon (GC) electrode with a combined electropolymerized permselective film of polytyramine and polypyrrole-1-propionic acid was used for selective detection of dopamine. The detection limit of dopamine was improved from 100 nM at a GC electrode to 5 nM at a BDD electrode. Chapter 3 showed field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles embedded in poly(diallyldimethylammonium) chloride, which has been investigated for the electrophoretic separation of indoxyl sulphate, homovanillic acid and vanillylmandelic acid. The detection limit of the three analytes obtained by using a boron doped diamond electrode was around 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfereing chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration. Chapter 4 showed the selective detection of Pseudomonas Quinolone Signal, PQS for quorum sensing from its precursor HHQ, using a simply boron doped diamond electrode. Furthermore, by combining poly(diallyldimethylammonium) chloride modified fused silica capillary with a BDD electrode for amperometric detection, PQS was separated from HHQ and other analogues. The detection limit of PQS was as low as 65 nM. Different P. aeruginosa mutant strains were studied. Chapter 5 showed the separation of aminothiols by layer-by-layer coating of silica capillary with a boron doped diamond electrode. The capillary was layer-by-layer coated with the polycation poly(diallyldimethylammonium) chloride and negatively charged silica nanoparticles. All the aminothiols was separated and detected using a BDD electrode in an acidic electrolyte. It was a novel scheme for the separation and detection of glutathione reduced and oxidized forms, which is important for estimated overstressed level in the human system.