1000 resultados para BURG-0
Resumo:
Microstructures and electrochemical properties of Ti0.26Zr0.07V0.21Mn0.1Ni0.33Mox (x=0,0.025,0.05,0.075, 0.10) electrode alloys have been investigated. The results of XRD analysis show that the alloys are mainly composed of V-based solid solution phase with body centered cubic (bcc) structure and C14 Laves phase with hexagonal structure. The addition of Mo element can imp ove the activation characteristics, maximum discharge capacity and cyclic durability for the electrode alloys
Resumo:
用柠檬酸硝酸盐法制备高纯Ce1-xNdxO2-x/2(x=0.10,0.15)固溶体,加入摩尔分数为5%的Mo,研究了Mo掺杂对烧结温度、结构及电性能的影响.通过X射线衍射、电感偶合等离子体和场发射扫描电镜等手段对氧化物进行了结构表征,采用交流阻抗谱测试其电性能.柠檬酸硝酸盐法制备的前驱体经1450℃烧结24 h得到致密度大于96%的陶瓷材料;加入5%Mo,在1250℃下烧结8 h即可达到理想的致密度(>95%).加入Mo在烧结过程中可加快晶界迁移,促进晶粒生长,显著提高了晶界电导率.在600℃时Ce0.85Nd0.15O1.925的晶界电导率为2.56 S/m,加入Mo后材料的电导率增加到5.62 S/m.
Resumo:
掺杂的CeO2基固体电解质因其在中低温条件下(500 ̄700℃)具有高氧离子电导率而成为有希望的IT-SOFCs(intermediate temperature-solid oxide fuel
Resumo:
采用溶胶-凝胶法合成Ce0.87Sm0.13-xPrxO2-δ(x=0.00,0.01,0.02)氧化物,通过X射线衍射、拉曼光谱、场发射扫描电镜对氧化物进行结构表征,利用交流阻抗谱测试电性能,并讨论了掺杂Pr对Ce0.87Sm0.13O2-δ微观结构和电性能的影响.结果表明,掺入少量Pr3+可减少或消除晶粒表面和晶界处的坑痕或孔隙,增加材料的致密性,从而降低材料的晶界电阻和电极界面电阻以及晶界电阻在总电阻中所占的比例,提高了材料的电导率.
Resumo:
A series of complex perovskite solid solutions of Ba[(Mg1-xCdx)(0.33)Nb-0.67]O-3 have been synthesized by the columbite method. Detailed Rietveld refinement of their X-ray diffraction data show that Ba[(Mg1-xCdx)0(.33)Nb(0.67)]O-3 has an order trigonal structure. The ordering degree as determined by the B-site occupancies increases with the partial substitution of Cd for Mg.
Resumo:
The Mg-8.31Gd-1.12Dy-0.38Zr (mass%) alloy was prepared by casting technology, and the microstructure, age hardening behavior and mechanical property have been investigated. It is noted that the alpha-Mg and the different Mg-RE (RE = Gd/Dy) compounds are subsistent in the as-cast and annealed state samples. The age hardening behavior is observed during the investigated temperature range, and the alloy exhibits high Vickers hardness, excellent ultimate tensile strength and yield strength at peak hardness.
Resumo:
Mg-5Al-0.4Mn-xNd (x=0, 1, 2 and 4wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results demonstrated that Al11Nd3 phase was formed and mainly aggregated along the grain boundaries with the addition of Nd. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content.
Resumo:
Microstructure and mechanical properties of Mg-4.5Zn-xNd (x = 0, 1 and 2, wt%) alloys heat-treated at 603 K for 2 It have been investigated. T-phase (an Mg-Zn-Nd ternary phase) was observed in the Nd containing alloys. The optimal mechanical properties were obtained in the Mg-4.5Zn-1Nd alloy, and the ultimate tensile strength and yield strength were 228 and 79 MPa, respectively. Through comparing with the Mg-4.5Zn alloy, the increments of ultimate tensile strength and yield strength were 51 and 17 MPa.
Resumo:
Microstructures and mechanical properties of the peak-aged Mg-4.5Zn-xGd (x = 0, 2, 3 and 5 wt.%) alloys have been investigated. The results showed that grain size increased with increasing Gd. Phase analysis showed that MgZn2 phase was observed in the Mg-4.5Zn alloy. While with Gd additions, Mg3Gd and Mg3Gd2Zn3 phases formed, and the volume fraction of the Mg3Gd2Zn3 phase increased with increasing Gd. Tensile test results indicated that the optimal mechanical properties were obtained in the Mg-4.5Zn-2Gd alloy, and the ultimate tensile strength and yield strength were 215 MPa and 121 MPa, respectively.
Resumo:
A novel cemented carbides (W0.5Al0.5)C-0.8-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared to WC-Co. The density, operating cost of the novel material were much lower than WC-Co. There is almost no eta-phase in the (W0.5Al0.5)C-0.8-Co cemented carbides system although the carbon deficient get the value of 20%, and successfully got the nanostructured rounded (W0.5Al0.5)C-0.8 particles.
Resumo:
The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.