996 resultados para BCS theory
Resumo:
It is shown that there is a strict one-to-one correspondence between results obtained by the use of "restricted" variational principles and those obtained by a moment method of the Mott-Smith type for shock structure.
Resumo:
Agriculture’s contribution to climate change is controversial as it is a significant source of greenhouse gases but also a sink of carbon. Hence its economic and technological potential to mitigate climate change have been argued to be noteworthy. However, social profitability of emission mitigation is a result from factors among emission reductions such as surface water quality impact or profit from production. Consequently, to value comprehensive results of agricultural climate emission mitigation practices, these co-effects to environment and economics should be taken into account. The objective of this thesis was to develop an integrated economic and ecological model to analyse the social welfare of crop cultivation in Finland on distinctive cultivation technologies, conventional tillage and conservation tillage (no-till). Further, we ask whether it would be privately or socially profitable to allocate some of barley cultivation for alternative land use, such as green set-aside or afforestation, when production costs, GHG’s and water quality impacts are taken into account. In the theoretical framework we depict the optimal input use and land allocation choices in terms of environmental impacts and profit from production and derive the optimal tax and payment policies for climate and water quality friendly land allocation. The empirical application of the model uses Finnish data about production cost and profit structure and environmental impacts. According to our results, given emission mitigation practices are not self-evidently beneficial for farmers or society. On the contrary, in some cases alternative land allocation could even reduce social welfare, profiting conventional crop cultivation. This is the case regarding mineral soils such as clay and silt soils. On organic agricultural soils, climate mitigation practices, in this case afforestation and green fallow give more promising results, decreasing climate emissions and nutrient runoff to water systems. No-till technology does not seem to profit climate mitigation although it does decrease other environmental impacts. Nevertheless, the data behind climate emission mitigation practices impact to production and climate is limited and partly contradictory. More specific experiment studies on interaction of emission mitigation practices and environment would be needed. Further study would be important. Particularly area specific production and environmental factors and also food security and safety and socio-economic impacts should be taken into account.
Resumo:
A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.
Resumo:
A theoretical solution has been obtained for the state of stress in a rectangular plate under a pair of symmetrically placed rigid indenters. The stress distributions along the two central axes have been calculated for a square plate assuming the pressure distribution under the indenters as uniform, parabolic and one resulting from 'constant displacement' on a semiinfinite boundary, for different ratios of indenter-width to side of square. The results are compared with those of photoelastic analysis of Berenbaum and Brodie and the validity of the solution is discussed. The solution has been extended to orthotropic materials and numerical results for one type of coal are given.
Resumo:
A simple new series, using an expansion of the velocity profile in parabolic cylinder functions, has been developed to describe the nonlinear evolution of a steady, laminar, incompressible wake from a given arbitrary initial profile. The first term in this series is itself found to provide a very satisfactory prediction of the decay of the maximum velocity defect in the wake behind a flat plate or aft of the recirculation zone behind a symmetric blunt body. A detailed analysis, including higher order terms, has been made of the flat plate wake with a Blasius profile at the trailing edge. The same method yields, as a special case, complete results for the development of linearized wakes with arbitrary initial profile under the influence of arbitrary pressure gradients. Finally, for purposes of comparison, a simple approximate solution is obtained using momentum integral methods, and found to predict satisfactorily the decay of the maximum velocity defect. © 1970 Wolters-Noordhoff Publishing.
Resumo:
We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.
Resumo:
A working model is given for the rate of ultrasonic emulsification, considering the dispersion at the interface (area A) and the coagulations in the volume V of the emulsion. A bimolecular coagulation leads to the equation c=c∞tanh bt;c∞=(Aα/Vβ)1/2;b=(Aαβ/V)1/2 while a monomolecular coagulation gives c=c∞{1-exp (-at)};c∞=Aα/Vβ;a=β. The experiments on the dependence of c∞, a and b upon A and V favour the bimolecular coagulation. The results are satisfactorily explained on general theoretical grounds.
Resumo:
A finite circular cylindrical shell subjected to a band of uniform pressure on its outer rim was investigated, using three-dimensional elasticity theory and the classical shell theories of Timoshenko (or Donnell) and Flügge. Detailed comparison of the resulting stresses and displacements was carried out for shells with ratios of inner to outer shell radii equal to 0.80, 0.85, 0.90 and 0.93 and for ratios of outer shell diameter to length of the shell equal to 0.5, 1 and 2. The ratio of band width to length of the shell was 0.2 and Poisson's ratio used was equal to 0.3. An Elliot 803 digital computer was used for numerical computations.
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.