985 resultados para Automatic selection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of selection of time-to-go (t(go)) for Generalized Vector Explicit Guidance (GENEX) law have been proposed in this paper. t(go) is known to be an important parameter in the control and cost function of GENEX guidance law. In this paper the formulation has been done to find an optimal value of t(go) that minimizes the performance cost. Mechanization of GENEX with this optimal t(go) reduces the lateral acceleration demand and consequently increases the range of the interceptor. This new formulation of computing t(go) comes in closed form and thus it can be implemented onboard. This new formulation is applied in the terminal phase of an surface-to-air interceptor for an angle constrained engagement. Results generated by simulation justify the use of optimal t(go).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and implementation of PolyMage, a domain-specific language and compiler for image processing pipelines. An image processing pipeline can be viewed as a graph of interconnected stages which process images successively. Each stage typically performs one of point-wise, stencil, reduction or data-dependent operations on image pixels. Individual stages in a pipeline typically exhibit abundant data parallelism that can be exploited with relative ease. However, the stages also require high memory bandwidth preventing effective utilization of parallelism available on modern architectures. For applications that demand high performance, the traditional options are to use optimized libraries like OpenCV or to optimize manually. While using libraries precludes optimization across library routines, manual optimization accounting for both parallelism and locality is very tedious. The focus of our system, PolyMage, is on automatically generating high-performance implementations of image processing pipelines expressed in a high-level declarative language. Our optimization approach primarily relies on the transformation and code generation capabilities of the polyhedral compiler framework. To the best of our knowledge, this is the first model-driven compiler for image processing pipelines that performs complex fusion, tiling, and storage optimization automatically. Experimental results on a modern multicore system show that the performance achieved by our automatic approach is up to 1.81x better than that achieved through manual tuning in Halide, a state-of-the-art language and compiler for image processing pipelines. For a camera raw image processing pipeline, our performance is comparable to that of a hand-tuned implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong aOE (c) 311 > texture in a lower growth rate regime, aOE (c) 110 > and ``rotated aOE (c) 110 > aEuroe in an intermediate growth regime, and aOE (c) 112 > in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid-liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid-liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (lambda) and d lambda/dH owing to the absence of pro-peritectic (Tb,Dy)Fe-3 and formation of aOE (c) 112 > texture, which lies closer to the easy magnetization direction (EMD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since streaming data keeps coming continuously as an ordered sequence, massive amounts of data is created. A big challenge in handling data streams is the limitation of time and space. Prototype selection on streaming data requires the prototypes to be updated in an incremental manner as new data comes in. We propose an incremental algorithm for prototype selection. This algorithm can also be used to handle very large datasets. Results have been presented on a number of large datasets and our method is compared to an existing algorithm for streaming data. Our algorithm saves time and the prototypes selected gives good classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio network. We present a novel and optimal relay selection (RS) rule that minimizes the symbol error probability (SEP) of an average interference-constrained underlay secondary system that uses amplify-and-forward relays. A key point that the rule highlights for the first time is that, for the average interference constraint, the signal-to-interference-plus-noise-ratio (SINR) of the direct source-to-destination (SI)) link affects the choice of the optimal relay. Furthermore, as the SINR increases, the odds that no relay transmits increase. We also propose a simpler, more practical, and near-optimal variant of the optimal rule that requires just one bit of feedback about the state of the SD link to the relays. Compared to the SD-unaware ad hoc RS rules proposed in the literature, the proposed rules markedly reduce the SEP by up to two orders of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant cost in obtaining acoustic training data is the generation of accurate transcriptions. For some sources close-caption data is available. This allows the use of lightly-supervised training techniques. However, for some sources and languages close-caption is not available. In these cases unsupervised training techniques must be used. This paper examines the use of unsupervised techniques for discriminative training. In unsupervised training automatic transcriptions from a recognition system are used for training. As these transcriptions may be errorful data selection may be useful. Two forms of selection are described, one to remove non-target language shows, the other to remove segments with low confidence. Experiments were carried out on a Mandarin transcriptions task. Two types of test data were considered, Broadcast News (BN) and Broadcast Conversations (BC). Results show that the gains from unsupervised discriminative training are highly dependent on the accuracy of the automatic transcriptions. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.