941 resultados para Automatic classification
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
This paper presents the design and implementation of PolyMage, a domain-specific language and compiler for image processing pipelines. An image processing pipeline can be viewed as a graph of interconnected stages which process images successively. Each stage typically performs one of point-wise, stencil, reduction or data-dependent operations on image pixels. Individual stages in a pipeline typically exhibit abundant data parallelism that can be exploited with relative ease. However, the stages also require high memory bandwidth preventing effective utilization of parallelism available on modern architectures. For applications that demand high performance, the traditional options are to use optimized libraries like OpenCV or to optimize manually. While using libraries precludes optimization across library routines, manual optimization accounting for both parallelism and locality is very tedious. The focus of our system, PolyMage, is on automatically generating high-performance implementations of image processing pipelines expressed in a high-level declarative language. Our optimization approach primarily relies on the transformation and code generation capabilities of the polyhedral compiler framework. To the best of our knowledge, this is the first model-driven compiler for image processing pipelines that performs complex fusion, tiling, and storage optimization automatically. Experimental results on a modern multicore system show that the performance achieved by our automatic approach is up to 1.81x better than that achieved through manual tuning in Halide, a state-of-the-art language and compiler for image processing pipelines. For a camera raw image processing pipeline, our performance is comparable to that of a hand-tuned implementation.
Resumo:
Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.
Resumo:
Traffic classification using machine learning continues to be an active research area. The majority of work in this area uses off-the-shelf machine learning tools and treats them as black-box classifiers. This approach turns all the modelling complexity into a feature selection problem. In this paper, we build a problem-specific solution to the traffic classification problem by designing a custom probabilistic graphical model. Graphical models are a modular framework to design classifiers which incorporate domain-specific knowledge. More specifically, our solution introduces semi-supervised learning which means we learn from both labelled and unlabelled traffic flows. We show that our solution performs competitively compared to previous approaches while using less data and simpler features. Copyright © 2010 ACM.
Resumo:
This paper discusses the Cambridge University HTK (CU-HTK) system for the automatic transcription of conversational telephone speech. A detailed discussion of the most important techniques in front-end processing, acoustic modeling and model training, language and pronunciation modeling are presented. These include the use of conversation side based cepstral normalization, vocal tract length normalization, heteroscedastic linear discriminant analysis for feature projection, minimum phone error training and speaker adaptive training, lattice-based model adaptation, confusion network based decoding and confidence score estimation, pronunciation selection, language model interpolation, and class based language models. The transcription system developed for participation in the 2002 NIST Rich Transcription evaluations of English conversational telephone speech data is presented in detail. In this evaluation the CU-HTK system gave an overall word error rate of 23.9%, which was the best performance by a statistically significant margin. Further details on the derivation of faster systems with moderate performance degradation are discussed in the context of the 2002 CU-HTK 10 × RT conversational speech transcription system. © 2005 IEEE.