880 resultados para Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Praziquantel (PZQ) is a pyrazinoisoquinoline anthelmintic that was discovered in 1972 by Bayer Germany. Currently, due to its efficacy, PZQ is the drug of choice against all species of Schistosoma. Although widely used, PZQ exhibits low and erratic bioavailability because of its poor water solubility. Nanostructured lipid carriers (NLC), second-generation solid lipid nanoparticles, were developed in the 1990s to improve the bioavailability of poorly water soluble drugs. The aim of this study was to investigate nanostructured lipid carriers as a strategy to improve the efficacy. of PZQ in S. mansoni treatment. We prepared NLC2 and NLC4 by adding seventy percent glycerol monostearate (GMS) as the solid lipid, 30% oleic acid (OA) as the liquid lipid and two surfactant systems containing either soybean phosphatidylcholine/poloxamer (PC/P-407) or phosphatidylcholine/Tween 60 (PC/T60), respectively. The carriers were characterized by nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and Fourier transform-infrared spectroscopy. The safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. The results showed that the encapsulation of PZQ in NLC2 or NLC4 improved the safety profile of the drug. Treatment efficacy was evaluated on the S. mansoni BH strain. PZQ-NLC2 and PZQ-NLC4 demonstrated an improved efficacy in comparison with free PZQ. The results showed that the intestinal transport of free PZQ and PZQ-NLC2 was similar. However, we observed that the concentration of PZQ absorbed was smaller when PZQ was loaded in NLC4. The difference between the amounts of absorbed PZQ could indicate that the presence of T60 in the nanoparticles (NLC4) increased the rigid lipid matrix, prolonging release of the drug. Both systems showed considerable in vitro activity against S. mansoni, suggesting that these systems may be a promising platform for the administration of PZQ for treating schistosomiasis.
Resumo:
This paper reports on the development and validation of a simple and sensitive method that uses solid phase extraction (SPE) and liquid chromatography with ultraviolet detection to analyze fluoxetine (FLX) and norfluoxetine (NFLX) in human plasma samples. A lab-made C18 SPE phase was synthesized by using a sol–gel process employing a low-cost silica precursor. This sorbent was fully characterized by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) to check the particles' shape, size and C18 functionalization. The lab-made C18 silica was used in the sample preparation step of human plasma by the SPE-HPLC-UV method. The method was validated in the 15 to 500 ng mL 1 range for both FLX and NFLX using a matrix matched curve. Detection limits of 4.3 and 4.2 ng mL 1 were obtained for FLX and NFLX, respectively. The repeatability and intermediary precision achieved varied from 7.6 to 15.0% and the accuracy ranged from 14.9 to 9.1%. The synthesized C18 sorbent was compared to commercial C18 sorbents. The average recoveries were similar (85–105%), however the lab-made C18 silica showed fewer interfering peaks in the chromatogram. After development and validation, the method using the lab-made C18 SPE was applied to plasma samples of patients under FLX treatment (n ¼ 6). The concentrations of FLX and NFLX found in the samples varied from 46.8–215.5 and 48.0–189.9 ng mL 1 , respectively.
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25 degrees C up to 800 degrees C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.