1000 resultados para Asymmetric migration
Resumo:
Historically the central area of the city of Iquique has been established as residential space migrants choosing from different backgrounds , however since the late 2000s migration flows are diversified being mostly Latin American immigrants who live in precarious conditions , accessing tugurizados properties , deteriorated in an increasingly growing informal market. The results presented here are derived from quantitative residential location of migrants , as well as the implementation of 13 in-depth interviews . From these results emerge that Latin American migrants access to the same places where once lived internal migrants, however they inhabit a restrictive market , uneven and inadequate living conditions lease, but allows them to articulate residence and proximity to industrial networks , social and popular trade.
Resumo:
In this paper a novel scalable public-key processor architecture is presented that supports modular exponentiation and Elliptic Curve Cryptography over both prime GF(p) and binary GF(2) extension fields. This is achieved by a high performance instruction set that provides a comprehensive range of integer and polynomial basis field arithmetic. The instruction set and associated hardware are generic in nature and do not specifically support any cryptographic algorithms or protocols. Firmware within the device is used to efficiently implement complex and data intensive arithmetic. A firmware library has been developed in order to demonstrate support for numerous exponentiation and ECC approaches, such as different coordinate systems and integer recoding methods. The processor has been developed as a high-performance asymmetric cryptography platform in the form of a scalable Verilog RTL core. Various features of the processor may be scaled, such as the pipeline width and local memory subsystem, in order to suit area, speed and power requirements. The processor is evaluated and compares favourably with previous work in terms of performance while offering an unparalleled degree of flexibility. © 2006 IEEE.
Resumo:
Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.
Resumo:
Several novel phosphoramidites have been prepared by reaction of the primary amines para-vinylaniline, ortho-anisidine, 2-methoxyphenyl(4-vinylbenzyl)amine, 8-aminoquinoline and 3-vinyl-8-aminoquinoline with (S)-1,1'-bi-2-naphthylchlorophosphite, in the presence of base. Rhodium(l) complexes of these phosphoramidites catalyse the asymmetric hydrogenation of dimethylitaconate and dehydroamino acids and esters giving ee values up to 95%. Soluble non-cross linked polymers of the para-vinylaniline and 3-vinyl-8-aminoquinoline-based phosphoramidites have been prepared by free radical co-polymerisation with styrene in the presence of AIBN as initiator. The corresponding [Rh(COD)](+) complexes serve as recyclable catalysts for the asymmetric hydrogenation dimethylitaconate and dehydroamino acids and esters to give ee values up to 80%. (C) 2003 Elsevier Science Ltd. All rights reserved.