891 resultados para Art in motion pictures.
Resumo:
Background - Abnormalities in visual processes have been observed in schizophrenia patients and have been associated with alteration of the lateral occipital complex and visual cortex. However, the relationship of these abnormalities with clinical symptomatology is largely unknown. Methods - We investigated the brain activity associated with object perception in schizophrenia. Pictures of common objects were presented to 26 healthy participants (age = 36.9; 11 females) and 20 schizophrenia patients (age = 39.9; 8 females) in an fMRI study. Results - In the healthy sample the presentation of pictures yielded significant activation (pFWE (cluster) < 0.001) of the bilateral fusiform gyrus, bilateral lingual gyrus, and bilateral middle occipital gyrus. In patients, the bilateral fusiform gyrus and bilateral lingual gyrus were significantly activated (pFWE (cluster) < 0.001), but not so the middle occipital gyrus. However, significant bilateral activation of the middle occipital gyrus (pFWE (cluster) < 0.05) was revealed when illness duration was controlled for. Depression was significantly associated with increased activation, and anxiety with decreased activation, of the right middle occipital gyrus and several other brain areas in the patient group. No association with positive or negative symptoms was revealed. Conclusions - Illness duration accounts for the weak activation of the middle occipital gyrus in patients during picture presentation. Affective symptoms, but not positive or negative symptoms, influence the activation of the right middle occipital gyrus and other brain areas.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].
Resumo:
Computed tomography (CT) is a valuable technology to the healthcare enterprise as evidenced by the more than 70 million CT exams performed every year. As a result, CT has become the largest contributor to population doses amongst all medical imaging modalities that utilize man-made ionizing radiation. Acknowledging the fact that ionizing radiation poses a health risk, there exists the need to strike a balance between diagnostic benefit and radiation dose. Thus, to ensure that CT scanners are optimally used in the clinic, an understanding and characterization of image quality and radiation dose are essential.
The state-of-the-art in both image quality characterization and radiation dose estimation in CT are dependent on phantom based measurements reflective of systems and protocols. For image quality characterization, measurements are performed on inserts imbedded in static phantoms and the results are ascribed to clinical CT images. However, the key objective for image quality assessment should be its quantification in clinical images; that is the only characterization of image quality that clinically matters as it is most directly related to the actual quality of clinical images. Moreover, for dose estimation, phantom based dose metrics, such as CT dose index (CTDI) and size specific dose estimates (SSDE), are measured by the scanner and referenced as an indicator for radiation exposure. However, CTDI and SSDE are surrogates for dose, rather than dose per-se.
Currently there are several software packages that track the CTDI and SSDE associated with individual CT examinations. This is primarily the result of two causes. The first is due to bureaucracies and governments pressuring clinics and hospitals to monitor the radiation exposure to individuals in our society. The second is due to the personal concerns of patients who are curious about the health risks associated with the ionizing radiation exposure they receive as a result of their diagnostic procedures.
An idea that resonates with clinical imaging physicists is that patients come to the clinic to acquire quality images so they can receive a proper diagnosis, not to be exposed to ionizing radiation. Thus, while it is important to monitor the dose to patients undergoing CT examinations, it is equally, if not more important to monitor the image quality of the clinical images generated by the CT scanners throughout the hospital.
The purposes of the work presented in this thesis are threefold: (1) to develop and validate a fully automated technique to measure spatial resolution in clinical CT images, (2) to develop and validate a fully automated technique to measure image contrast in clinical CT images, and (3) to develop a fully automated technique to estimate radiation dose (not surrogates for dose) from a variety of clinical CT protocols.