1000 resultados para Art -- Commande
Resumo:
The German site of Geißenklösterle is crucial to debates concerning the European Middle to Upper Palaeolithic transition and the origins of the Aurignacian in Europe. Previous dates from the site are
central to an important hypothesis, the Kulturpumpe model, which posits that the Swabian Jura was an area where crucial behavioural developments took place and then spread to other parts of Europe. The previous chronology (critical to the model), is based mainly on radiocarbon dating, but remains poorly constrained due to the dating resolution and the variability of dates. The cause of these problems is disputed, but two principal explanations have been proposed: a) larger than expected variations in the production of atmospheric radiocarbon, and b) taphonomic in?uences in the site mixing the bones that were dated into different parts of the site. We reinvestigate the chronology using a new series of radiocarbon determinations obtained from the Mousterian, Aurignacian and Gravettian levels. The results strongly imply that the previous dates were affected by insuf?cient decontamination of the bone collagen prior to dating. Using an ultra?ltration protocol the chronometric picture becomes much clearer. Comparison of the results against other recently dated sites in other parts of Europe suggests the Early Aurignacian levels are earlier than other sites in the south of France and Italy, but not as early as recently dated sites which suggest a pre-Aurignacian dispersal of modern humans to Italy byw45000 cal BP. They are consistent with the importance of the Danube Corridor as a key route for the movement of people and ideas. The new dates fail to refute the Kulturpumpe model and suggest that Swabian Jura is a region that contributed signi?cantly to the evolution of symbolic behaviour as indicated by early evidence for ?gurative art, music and mythical imagery. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Despite its high incidence and devastating outcomes, acute respiratory distress syndrome (ARDS) has no specific treatment, with effective therapy currently limited to minimizing potentially harmful ventilation and avoiding a positive fluid balance. Many pharmacological therapies have been investigated with limited success to date. In this review article we provide a state-of-the-art update on recent and ongoing trials, as well as reviewing promising future pharmacological therapies in ARDS.
Resumo:
Thousands of Neolithic and Bronze Age open-air rock art panels exist across the countryside in northern England. However, desecration, pollution, and other factors are threatening the survival of these iconic stone monuments. Evidence suggest that rates of panel deterioration may be increasing, although it is not clear whether this is due to local factors or wider environmental influences accelerated by environmental change. To examine this question, 18 rock art panels with varied art motifs were studied at two major panel locations at Lordenshaw and Weetwood Moor in Northumberland. A condition assessment
tool was used to first quantify the level of deterioration of each panel (called “staging”). Stage estimates then were compared statistically with 27 geochemical and physical descriptors of local environments, such as soil moisture, salinity, pH, lichen coverage, soil anions and cation levels, and panel orientation, slope, and standing height. In parallel, climate modelling was performed using UKCP09 to assess how projected climatic conditions (to 2099) might affect the environmental descriptors most correlated with elevated stone deterioration. Only two descriptors significantly correlated (P < 0.05) with increased stage: the standing height of the panel and the exchangeable cation content of the local soils, although moisture conditions also were potentially influential at some panels. Climate modelling predicts warming temperatures, more seasonally variable precipitation, and increased wind speeds, which hint stone deterioration could accelerate in the future due to increased physiochemical weathering. We recommend key panels be targeted for immediate management intervention, focusing on reducing wind exposures, improving site drainage, and potentially immobilizing soil salts.
Resumo:
The acceleration of ions with high-power lasers has been a very active field of research during the past 10 years. This paper summarizes the main results obtained in the field, detailing the mechanisms of the acceleration process and the main observed beam characteristics. Perspectives for future development of the field and current and future applications are also discussed. © 2012 by Società Italiana di Fisica.
Resumo:
An underground work (such as a tunnel or a cavern) has many, well known, environmental qualities such as: no physical barriers crossing the land, less maintenance costs than an analogous surface structure, less expenses for heating and conditioning; a localized emission of noise, gas, dust during operation and, finally, a better protection against seismic actions.
It cannot be forgotten, anyway, that some negative environmental features are present such as, for example, : perturbation, pollution and drainage of the groundwater; settlements; disposal of waste rock.
In the paper the above mentioned concepts are discussed and analysed to give a global overview of all this aspects.
Resumo:
Ion acceleration driven by high intensity laser pulses is attracting an impressive and steadily increasing research effort. Experiments over the past 10-15 years have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties, which have stimulated interest in a number of innovative applications. While most of this work has been based on sheath acceleration processes, where space-charge fields are established by relativistic electrons at surfaces of the irradiated target, a number of novel mechanisms has been the focus of recent theoretical and experimental activities. This paper will provide a brief review of the state of the art in the field of laser-driven ion acceleration, with particular attention to recent developments.