880 resultados para Arbovirus infections
Resumo:
This descriptive, cross-sectional study addressed the relationship between variables of deployed military women and prevalence of gender-specific infections. The analysis of secondary data will look at the last deployment experience of 880 randomly selected U.S. military women who completed a mailed questionnaire (Deployed Female Health Practice Questionnaire (FHPQ)) in June 1998. The questionnaire contained 191 items with 80 data elements and one page for the subject's written comments. The broad categories of the questionnaire included: health practices, health promotion, disease prevention and treatment, reproduction, lifestyle management, military characteristics and demographics. The research questions are: (1) What is the prevalence of sexually transmitted diseases (STD), urinary tract infections (UTI) and vaginal infections (VI) related to demographic data, military characteristics, behavioral risk factors and health practices of military women during their last deployment? and (2) What are the differences between STD, UTI and VI related to the demographic data, military characteristics, behavioral risk factors and health practices of military women during their last deployment. The results showed that (1) STDs were found to be significantly associated with age and rank but not location of deployment or military branch; (2) UTI were found to be significantly associated with intrauterine device (IUD) use, prior UTI and type of items used for menses management, but not education or age; and (3) VI were significantly associated with age, rank and deployment location but not ethnicity or education. Although quantitative research exploring hygiene needs of deployed women continues, qualitative studies may uncover further “hidden” issues of importance. It cannot be said that the military has not made proactive changes for women, however, continued efforts to hone these changes are still encouraged. Mandatory debriefings of “seasoned” deployed women soldiers and their experiences would benefit leadership and newly deployed female soldiers with valuable “lessons learned.” Tailored hygiene education material, prevention education classes, easy access website with self-care algorithms, pre-deployment physicals, revision of military protocols for health care providers related to screening, diagnosing and treatment of gender-specific infections and process changes in military supply network of hygiene items for women are offered as recommendations. ^
Resumo:
Background. Nontuberculous mycobacteria (NTM) are environmentally ubiquitous organisms whose epidemiology is poorly understood. Species differ with respect to disease presentation, prognosis, and antimicrobial susceptibility. We reviewed one Texas pediatric hospital's experience with NTM and tuberculosis (TB) disease.^ Methods. This was a retrospective case series of children with culture-confirmed mycobacterial infections seen at a children's hospital from 2003-2008.^ Results. One hundred sixty-two isolates were identified from 150 children; 132 (81.5%) had NTM species isolated, and 30 (18.5%) had M. tuberculosis isolated; 2 children had both NTM and M. tuberculosis isolated. The most common species were Mycobacterium avium complex (MAC) (29%), M. tuberculosis (18.5%), M. abscessus (13%), M. fortuitum (11.7%), and M. chelonae-abscessus (9.9%). TB was the most common organism isolated from respiratory specimens. MAC and M. simiae were significantly more likely to be associated with lymphadenopathy than other NTM species (p < 0.001). Mycobacterium fortuitum was significantly more likely to be associated with soft tissue infections than other NTM species (p < 0.001). Seventy-five children met criteria for NTM disease (30 lymphadenopathy, 17 pulmonary, 17 soft tissue infections, 11 bacteremia). Children with NTM lymphadenopathy were more likely to be Hispanic (OR 24, CI 2.8-1063), younger (3.3 years vs. 10.6 years, p < 0.001), and previously healthy (OR 0.004, CI 0-0.06) than children with NTM pulmonary disease. Children with NTM disease were less likely to be previously healthy (OR 0.30, 95% CI 0.09-0.88) and foreign-born (OR 0.09, CI 0.03-0.29) than children with TB.^ Conclusions. Children with NTM lymphadenopathy were younger and more likely to be healthy than children with NTM pulmonary disease. Tuberculosis comprised a large proportion of mycobacterial disease in this series. Children with NTM pulmonary disease were less likely to be previously healthy and born abroad when compared to children with TB. There was wide variation in antimicrobial susceptibility patterns among NTM species. This, together with the large percentage of disease caused by TB, emphasizes the importance of securing a specific microbiologic diagnosis in children with pulmonary or lymph node disease caused by mycobacteria.^
Resumo:
Increasing attention has been given to the problem of medical errors over the past decade. Included within that focused attention has been a strong interest in reducing the occurrence of healthcare-associated infections (HAIs). Acting concurrently with federal initiatives, the majority of U.S. states have statutorily required reporting and public disclosure of HAI data. Although the occurrence of these state statutory enactments and other state initiatives represent a recognition of the strong concern pertaining to HAIs, vast differences in each state’s HAI reporting and public disclosure requirements creates a varied and unequal response to what has become a national problem.^ The purpose of this research was to explore the variations in state HAI legal requirements and other state mandates. State actions, including statutory enactments, regulations, and other initiatives related to state reporting and public disclosure mechanisms were compared, discussed, and analyzed in an effort to illustrate the impact of the lack of uniformity as a public health concern.^ The HAI statutes, administrative requirements, and other mandates of each state and two U.S. territories were reviewed to answer the following seven research questions: How far has the state progressed in its HAI initiative? If the state has a HAI reporting requirement, is it mandatory or voluntary? What healthcare entities are subject to the reporting requirements? What data collection system is utilized? What measures are required to be reported? What is the public disclosure mechanism? How is the underlying reported information protected from public disclosure or other legal release?^ Secondary publicly available data, including state statutes, administrative rules, and other initiatives, were utilized to examine the current HAI-related legislative and administrative activity of the study subjects. The information was reviewed and analyzed to determine variations in HAI reporting and public disclosure laws. Particular attention was given to the seven key research questions.^ The research revealed that considerable progress has been achieved in state HAI initiatives since 2004. Despite this progress, however, when reviewing the state laws and HAI programs comparatively, considerable variations were found to exist with regards to the type of reporting requirements, healthcare facilities subject to the reporting laws, data collection systems utilized, reportable measures, public disclosure requirements, and confidentiality and privilege provisions. The wide variations in state statutes, administrative rules, and other agency directives create a fragmented and inconsistent approach to addressing the nationwide occurrence of HAIs in the U.S. healthcare system. ^
Resumo:
Background. Nosocomial infections are a source of concern for many hospitals in the United States and worldwide. These infections are associated with increased morbidity, mortality and hospital costs. Nosocomial infections occur in ICUs at a rate which is five times greater than those in general wards. Understanding the reasons for the higher rates can ultimately help reduce these infections. The literature has been weak in documenting a direct relationship between nosocomial infections and non-traditional risk factors, such as unit staffing or patient acuity.^ Objective. To examine the relationship, if any, between nosocomial infections and non-traditional risk factors. The potential non-traditional risk factors we studied were the patient acuity (which comprised of the mortality and illness rating of the patient), patient days for patients hospitalized in the ICU, and the patient to nurse ratio.^ Method. We conducted a secondary data analysis on patients hospitalized in the Medical Intensive Care Unit (MICU) of the Memorial Hermann- Texas Medical Center in Houston during the months of March 2008- May 2009. The average monthly values for the patient acuity (mortality and illness Diagnostic Related Group (DRG) scores), patient days for patients hospitalized in the ICU and average patient to nurse ratio were calculated during this time period. Active surveillance of Bloodstream Infections (BSIs), Urinary Tract Infections (UTIs) and Ventilator Associated Pneumonias (VAPs) was performed by Infection Control practitioners, who visited the MICU and performed a personal infection record for each patient. Spearman's rank correlation was performed to determine the relationship between these nosocomial infections and the non-traditional risk factors.^ Results. We found weak negative correlations between BSIs and two measures (illness and mortality DRG). We also found a weak negative correlation between UTI and unit staffing (patient to nurse ratio). The strongest positive correlation was found between illness DRG and mortality DRG, validating our methodology.^ Conclusion. From this analysis, we were able to infer that non-traditional risk factors do not appear to play a significant role in transmission of infection in the units we evaluated.^
Resumo:
Non routine hospital settings are those that are infrequently used in hospitals and that often do not come to mind when sanitation and disinfection practices are used. These settings are a major source of nosocomial, or hospital acquired, infections, and are often overlooked. Data on these sources are often scattered and scarce, but these sources are significant such that they warrant equal attention of commonly recognized nosocomial infection sources in order to help reduce incidence of nosocomial infections. ^
Resumo:
Background. The number of infections of cardiac implantable electronic devices (CIED) continues to escalate out of proportion to the increase rate of device implantation. Staphylococcal organisms account for 70% to 90% of all CIED infections. However, little is known about non-staphylococcal infections, which have been described only in case reports, small case series or combined in larger studies with staphylococcal CIED infections, thereby diluting their individual impact. ^ Methods. A retrospective review of hospital records of patients admitted with a CIED-related infections were identified within four academic hospitals in Houston, Texas between 2002 and 2009. ^ Results. Of the 504 identified patients with CIED-related infection, 80 (16%) had a non-staphylococcal infection and were the focus of this study. Although the demographics and comorbities of subjects were comparable to other reports, our study illustrates many key points: (a) the microbiologic diversity of non-staphylococcal infections was rather extensive, as it included other Gram-positive bacteria like streptococci and enterococci, a variety of Gram-negative bacteria, atypical bacteria including Nocardia and Mycobacteria, and fungi like Candida and Aspergillus; (b) the duration of CIED insertion prior to non-staphylococcal infection was relatively prolong (mean, 109 ± 27 weeks), of these 44% had their device previously manipulated within a mean of 29.5 ± 6 weeks; (c) non-staphylococcal organisms appear to be less virulent, cause prolonged clinical symptoms prior to admission (mean, 48 ± 12.8 days), and are associated with a lower mortality (4%) than staphylococcal organisms; (d) thirteen patients (16%) presented with CIED-related endocarditis; (e) although not described in prior reports, we identified 3 definite and 2 suspected cases of secondary Gram-negative bacteremia seeding of the CIED; and (f) inappropriate antimicrobial coverage was provided in approximately 50% of patients with non-staphylococcal infections for a mean period of 2.1 days. ^ Conclusions. Non-staphylococcal CIED-related infections are prevalent and diverse with a relatively low virulence and mortality rate. Since non-staphylococcal organisms are capable of secondarily seeding the CIED, a high suspicion for CIED-related infection is warranted in patients with bloodstream infection. Additionally, in patients with suspected CIED infection, adequate Gram positive and -negative antibacterial coverage should be administered until microbiologic data become available.^
Resumo:
Unlike infections occurring during periods of chemotherapy-induced neutropenia, postoperative infections in patients with solid malignancy remain largely understudied. The purpose of this population-based study was to evaluate the clinical and economic burden, as well as the relationship of hospital surgical volume and outcomes associated with serious postoperative infection (SPI) – i.e., bacteremia/sepsis, pneumonia, and wound infection – following resection of common solid tumors.^ From the Texas Discharge Data Research File, we identified all Texas residents who underwent resection of cancer of the lung, esophagus, stomach, pancreas, colon, or rectum between 2002 and 2006. From their billing records, we identified ICD-9 codes indicating SPI and also subsequent SPI-related readmissions occurring within 30 days of surgery. Random-effects logistic regression was used to calculate the impact of SPI on mortality, as well as the association between surgical volume and SPI, adjusting for case-mix, hospital characteristics, and clustering of multiple surgical admissions within the same patient and patients within the same hospital. Excess bed days and costs were calculated by subtracting values for patients without infections from those with infections computed using multilevel mixed-effects generalized linear model by fitting a gamma distribution to the data using log link.^ Serious postoperative infection occurred following 9.4% of the 37,582 eligible tumor resections and was independently associated with an 11-fold increase in the odds of in-hospital mortality (95% Confidence Interval [95% CI], 6.7-18.5, P < 0.001). Patients with SPI required 6.3 additional hospital days (95% CI, 6.1 - 6.5) at an incremental cost of $16,396 (95% CI, $15,927–$16,875). There was a significant trend toward lower overall rates of SPI with higher surgical volume (P=0.037). ^ Due to the substantial morbidity, mortality, and excess costs associated with SPI following solid tumor resections and given that, under current reimbursement practices, most of this heavy burden is borne by acute care providers, it is imperative for hospitals to identify more effective prophylactic measures, so that these potentially preventable infections and their associated expenditures can be averted. Additional volume-outcomes research is also needed to identify infection prevention processes that can be transferred from higher- to lower-volume providers.^
Resumo:
Can the early identification of the species of staphylococcus responsible for infection by the use of Real Time PCR technology influence the approach to the treatment of these infections? ^ This study was a retrospective cohort study in which two groups of patients were compared. The first group, ‘Physician Aware’ consisted of patients in whom physicians were informed of specific staphylococcal species and antibiotic sensitivity (using RT-PCR) at the time of notification of the gram stain. The second group, ‘Physician Unaware’ consisted of patients in whom treating physicians received the same information 24–72 hours later as a result of blood culture and antibiotic sensitivity determination. ^ The approach to treatment was compared between ‘Physician Aware’ and ‘Physician Unaware’ groups for three different microbiological diagnoses—namely MRSA, MSSA and no-SA (or coagulase negative Staphylococcus). ^ For a diagnosis of MRSA, the mean time interval to the initiation of Vancomycin therapy was 1.08 hours in the ‘Physician Aware’ group as compared to 5.84 hours in the ‘Physician Unaware’ group (p=0.34). ^ For a diagnosis of MSSA, the mean time interval to the initiation of specific anti-MSSA therapy with Nafcillin was 5.18 hours in the ‘Physician Aware’ group as compared to 49.8 hours in the ‘Physician Unaware’ group (p=0.007). Also, for the same diagnosis, the mean duration of empiric therapy in the ‘Physician Aware’ group was 19.68 hours as compared to 80.75 hours in the ‘Physician Unaware’ group (p=0.003) ^ For a diagnosis of no-SA or coagulase negative staphylococcus, the mean duration of empiric therapy was 35.65 hours in the ‘Physician Aware’ group as compared to 44.38 hours in the ‘Physician Unaware’ group (p=0.07). However, when treatment was considered a categorical variable and after exclusion of all cases where anti-MRS therapy was used for unrelated conditions, only 20 of 72 cases in the ‘Physician Aware’ group received treatment as compared to 48 of 106 cases in the ‘Physician Unaware’ group. ^ Conclusions. Earlier diagnosis of MRSA may not alter final treatment outcomes. However, earlier identification may lead to the earlier institution of measures to limit the spread of infection. The early diagnosis of MSSA infection, does lead to treatment with specific antibiotic therapy at an earlier stage of treatment. Also, the duration of empiric therapy is greatly reduced by early diagnosis. The early diagnosis of coagulase negative staphylococcal infection leads to a lower rate of unnecessary treatment for these infections as they are commonly considered contaminants. ^
Resumo:
The clinical records of 432 P. falciparum and P. vivax infected volunteer male inmates of the Maryland House of Corrections in Jessup, Maryland, were studied to determine (1) the clinical and parasitologic courses of infections in both parasite species, and (2) the influence of previous homologous and/or heterologous strain exposures on subsequent infections. The clinical and parasitologic courses of infection with both P. falciparum and P. vivax species indicated that: (a) there were characteristic strain related differences between P. falciparum and P. vivax. P. falciparum strains were more apt to cause severe infections than P. vivax strains. (b) Blood-induced infections produced significantly shorter prepatent and incubation periods than mosquito-induced. (c) Blacks tolerated the infections better than whites and, (d) homologous and heterologous strain immunities persisted with previous malaria history. In previously exposed cases, clinical manifestations were moderate, peak fever lowered, and peak parasitemias limited. (e) Anti-malarial drugs were effective in reducing sexual and asexual forms of the malaria parasite, and limiting peak fevers, irrespective of method of induction, race, parasite strain and species, and drug type used.^ Given these findings, and the current worldwide resurgence of malaria, this study has major implications in terms of setting malaria control and public health policies in both developed and developing countries.^
Resumo:
The purpose of this study was to assess whether C. difficile infection (CDI) increases the risk of bacteremia or E. coli infection. The first specific aim of this study was to study the incidence of post C. difficile bacteremia in CDI patients stratified by disease severity vs. controls. The second specific aim was to study the incidence of post C. difficile E. coli infection from normally sterile sites stratified by disease severity vs. controls. This was a retrospective case case control study. The cases came from an ongoing prospective cohort study of CDI. Case group 1 were patients with mild to moderate CDI. Case group 2 were patients who had severe CDI. Controls were hospitalized patients given broad spectrum antibiotics that did not develop CDI. Controls were matched by age (±10 years) and duration of hospital visit (±1 week). 191 cases were selected from the cohort study and 191 controls were matched to the cases. Patients were followed up to 60 days after the initial diagnosis of CDI and assessed for bacteremia and E. coli infections. The Zar score was used to determine the severity of the CDI. Stata 11 was used to run all analyses. ^ The risk of non staphylococcal bacteremia after diagnosis of CDI was higher compared to controls (14% and 7% respectively, OR: 2.27; 95% CI:1.07-5.01, p=0.028). The risk of getting an E.coli infection was higher in cases than in controls (13% and 9% respectively although the results were not statistically significant (OR:1.4; 95% CI:0.38-5.59;p=0.32). Rates of non-staphylococcal bacteremia and E. coli infection did not differ cased on CDI severity. ^ This study showed that the risk of developing non-staphylococcus bacteremia was higher in patients with CDI compared to matched controls. The findings supported the hypothesis that CDI increases the risk of bacterial translocation specifically leading to the development of bacteremia.^
Resumo:
Central Line-Associated Bloodstream Infections (CLABSIs) are one of the most costly and preventable cases of morbidity and mortality among intensive care units (ICUs) in health care today. In 2008, the Centers for Medicare and Medicaid Services Medicare Program, under the Deficit Reduction Act, announced it will no longer reimburse hospitals for such adverse events among those related to CLABSIs. This reveals the financial burden shift onto the hospital rather than the health care payer who can now withhold reimbursements. With this weighing more heavily on hospital management, decision makers will need to find a way to completely prevent cases of CLABSI or simply pay for the financial consequences. ^ To reduce the risk of CLABSIs, several clinical, preventive interventions have been studied and even instituted including the Central Line (CL) Bundle and Antimicrobial Coated Central Venous Catheters (AM-CVCs). I carried out a formal systematic review on the topic to compare the cost-effectiveness of the Central Line (CL) Bundle to the commercially available antimicrobial coated central venous catheters (AM-CVCs) in preventing CLABSIs among critically and chronically ill patients in the U.S. Evidence was assessed for inclusion against predefined criteria. I, myself, conducted the data extraction. Ten studies were included in the review. Efficacy in reducing the mean incidence rate of CLABSI by the CL Bundle and AM-CVC interventions were compared with one another including costs. ^ The AM-CVC impregnated with antibiotics, rifampin-minocycline (AI-RM) is more clinically effective than the CL Bundle in reducing the mean rate of CLABSI per 1,000 catheter days. The lowest mean incidence rate of CLABSI per 1,000 catheter days among the AM-CVC studies was as low as zero in favor of the AI-RM. Moreover, the review revealed that the AI-RM appears to be more cost-effective than the CL Bundle. Results showed the adjusted incremental cost of the CL Bundle per ICU patient requiring a CVC to be approximately $196 while the AI-RM at only an additional cost of $48 per ICU patient requiring a CVC. ^ Limited data regarding the cost of the CL Bundle made it difficult to make a true comparison to the direct cost of the AM-CVCs. However, using the result I did have from this review, I concluded that the AM-CVCs do appear to be more cost-effective in decreasing the mean rate of CLABSI while also minimizing incremental costs per CVC than the CL Bundle. This review calls for further research addressing the cost of the CL Bundle and compliance and more effective study designs such as randomized control trials comparing the efficacy and cost of the CL Bundle to the AM-CVCs. Barriers that may face health care managers when implementing the CL Bundle or AM-CVCs include additional costs associated with the intervention, educational training and ongoing reinforcement as well as creating a new culture of understanding.^
Resumo:
Catheter related bloodstream infections are a significant barrier to success in many inpatient healthcare facilities. The goal of this study was to analyze and determine if an evidence based methodology to reduce the number of catheter related bloodstream infections in a pediatric inpatient healthcare facility had significant impact on the infection rate. Catheter related bloodstream infection rates were compared before and after program implementation. The patient population was selected based upon a recommendation in the 2010 National Healthcare Safety Network report on device related infections. This report indicated a need for more data on pediatric populations requiring admission to a long term care facility. The study design is a retrospective cohort study. Catheter related bloodstream infection data was gathered between 2008 and 2011. In October of 2008 a program implementation began to reduce the number of catheter related bloodstream infections. The key components of this initiative were to implement a standardized catheter maintenance checklist, introduce the usage of a chlorhexadine gluconate based product for catheter maintenance and skin antisepsis, and a multidisciplinary education plan that focused on hand hygiene and aseptic technique. The catheter related bloodstream infection rate in 2008 was 21.21 infections per 1000 patient-line days. After program implementation the 2009 catheter related bloodstream infection rate dropped to 1.11 per 1000 patient-line days. The infection rates in 2010 and 2011 were 2.19 and 1.47 respectively. Additionally, this study demonstrated that there was a potential cost savings of $620,000 to $1,240,000 between 2008 and 2009. In conclusion, an evidence based program based upon CDC guidelines can have a significant impact on catheter related bloodstream infection rates. ^
Resumo:
Study Objective: Identify the most frequent risk factors of Community Acquired-MRSA (CA-MRSA) Skin and Soft-tissue Infections (SSTIs) using a case series of patients and characterize them by age, race/ethnicity, gender, abscess location, druguse and intravenous drug-user (IVDU), underlying medical conditions, homelessness, treatment resistance, sepsis, those whose last healthcare visit was within the last 12 months, and describe the susceptibility pattern from this central Texas population that have come into the University Medical Center Brackenridge (UMCB) Emergency Department (ED). ^ Methods: This study was a retrospective case-series medical record review involving a convenience sample of patients in 2007 from an urban public hospital's ED in Texas that had a SSTI that tested positive for MRSA. All positive MRSA cultures underwent susceptibility testing to determine antibiotic resistance. The demographic and clinical variables that were independently associated with MRSA were determined by univariate and multivariate analysis using logistic regression to calculate odds ratios (OR), 95% confidence intervals, and significance (p≤ 0.05). ^ Results: In 2007, there were 857 positive MRSA cultures. The demographics were: males 60% and females 40%, with the average age of 36.2 (std. dev. =13) the study population consisted of non-Hispanic white (42%), Hispanics (38%), and non-Hispanic black (18.8%). Possible risk factors addressed included using recreational drugs (not including IVDU) (27%) homelessness (13%), diabetes status (12.6%) or having an infectious disease, and IVDU (10%). The most frequent abscess location was the leg (26.6%), followed by the arm and torso (both 13.7%). Eighty-three percent of patients had one prominent susceptibility pattern that had a susceptibility rate for the following antibiotics: trimethoprim/sulfamethoxazole (TMP-SMX) and vancomycin had 100%, gentamicin 99%, clindamycin 96%, tetracycline 96%, and erythromycin 56%. ^ Conclusion: The ED is becoming an important area for disease transmission between the sterile hospital environment and the outside environment. As always, it is important to further research in the ED in an effort to better understand MRSA transmission and antibiotic resistance, as well as to keep surveillance for the introduction of new opportunistic pathogens into the population. ^
Resumo:
Methicillin Resistant Staphylococcus aureus healthcare-associated infections (MRSA HAIs) are a major cause of morbidity in hospitalized patients. They pose great economic burden to hospitals caring for these patients. Intensified Interventions aim to control MRSA HAIs. Cost-effectiveness of Intensified Interventions is largely unclear. We performed a review of cost-effectiveness literature on Intensified Interventions , and provide a summary of study findings, the status of economic research in the area, and information that will help decision-makers at regional level and guide future research.^ We conducted literature search using electronic database PubMed, EBSCO, and The Cochrane Library. We limited our search to English articles published after 1999. We reviewed a total of 1,356 titles, and after applying our inclusion and exclusion criteria selected seven articles for our final review. We modified the Economic Evaluation Abstraction Form provided by CDC, and used this form to abstract data from studies.^ Of the seven selected articles two were cohort studies and the remaining five were modeling studies. They were done in various countries, in different study settings, and with different variations of the Intensified Intervention . Overall, six of the seven studies reported that Intensified Interventions were dominant or at least cost-effective in their study setting. This effect persisted on sensitivity testing.^ We identified many gaps in research in this field. The cost-effectiveness research in the field is mostly composed of modeling studies. The studies do not always clearly describe the intervention. The intervention and infection costs and the sources for these costs are not always explicit or are missing. In modeling studies, there is uncertainty associated with some key model inputs, but these inputs are not always identified. The models utilized in the modeling studies are not always tested for internal consistency or validity. Studies usually test the short term cost-effectiveness of Intensified Interventions but not the long results.^ Our study limitation was the inability to adjust for differences in study settings, intervention costs, disease costs, or effectiveness measures. Our study strength is the presentation of a focused literature review of Intensified Interventions in hospital settings. Through this study we provide information that will help decision makers at regional level, help guide future research, and might change clinical care and policies. ^