924 resultados para Arab spring
Resumo:
The microzooplankton grazing dilution experiments were conducted at stations 126, 127, 131 and 133-137, following Landry & Hassett (1982). Seawater samples (whole seawater - WSW) were taken via Niskin bottles mounted on to a CTD Rosette out of the chlorophyll maximum at each station. Four different dilution levels were prepared with WSW and GF/F filtered seawater - 100% WSW, 75% WSW, 50% WSW and 25% WSW. The diluted WSW was filled in 2.4 L polycarbonate bottles (two replicates for every dilution level). Three subsamples (250 - 500 mL depending on in situ chlorophyll) of the 100% WSW were filtered on to GF/F filters (25 mm diameter) and chlorophyll was extracted in 5 mL 96% ethanol for 12-24 hours. Afterwards it was measured fluorometrically before and after the addition of HCl with a Turner fluorometer according to Jespersen and Christoffersen (1987) on board of the ship. In addition, one 250 mL subsample of the 100% WSW was fixed in 2% Lugol (final concentration), to determine the microzooplankton community when back at the Institute for Hydrobiology and Fisheries Science in Hamburg. Also, one 50 mL subsample of the 100% WSW was fixed in 1 mL glutaraldehyde, to quantify bacteria abundance. The 2.4 L bottles were put in black mesh-bags, which reduced incoming radiation to approximately 50% (to minimize chlorophyll bleaching). The bottles were incubated for 24 hours in a tank on deck with flow-through water, to maintain in situ temperature. An additional experiment was carried out to test the effect of temperature on microzooplankton grazing in darkness. Therefore, 100% WSW was incubated in the deck tank and in two temperature control rooms of 5 and 15°C in darkness (two bottles each). The same was done with bottles where copepods were added (five copepods of Calanus finmarchicus in each bottle; males and females were randomly picked and divided onto the bottles). In addition, two 100% WSW bottles with five copepods each were incubated at in situ temperature at 100% light level (without mesh-bags). All experiments were incubated for 24 hours and afterwards two subsamples of each bottle were filtered on to GF/F filters (25 mm diameter); 500 - 1000 mL depending on in situ chlorophyll. One 250 mL subsample of one of the two replicates of each dilution level and each additional experiment (temperature and temperature/copepods) was fixed in 5 mL lugol for microzooplankton determination. One 50 mL subsample of one of the two 100% WSW bottles as well as of one of the additional experiments without copepods was fixed in 1 mL glutaraldehyde for bacteria determination later on. Copepods were fixed in 4% formaldehyde for length measurements and sex determination.
Resumo:
The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of a less saline and warmer surface water (~1 m thick) caused by melting of the ice was observed in the fjord during the first days of May. In summer the less saline surface layer was about 3 m thick. Euphotic depth measured under the ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (content of total particulate matter in the fjord reached 1.66 kg/m**2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, presence of peridinin indicates presence of Dinophyta and alloxanthin - occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a / chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chlorophyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer / chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.
Resumo:
The Persian Gulf situated in the arid climate region of the northern hemisphere shows special conditions in its hydrochemistry. The high evaporation, the lack of large rivers, and the exclusion of deep water from the Indian Ocean governs the nutrient cycle. At 28 stations in the deeper part of the Persian Gulf (Iran side), in the Strait of Hormuz, and in the Gulf of Oman determinations of dissolved oxygen, dissolved inorganic phosphate, silicate, and pH were carried out. On 4 selected transverse profiles for phosphate, and dissolved oxygen and on 1 length profile for phosphate, silicate, oxygen, and pH the distribution of these components is shown and the in- and outflow is characterized. It is also pointed out that the nutrients on their way into the Persian Gulf are diminished and that temporary replenishment supply from a layer of about 100 m depth in the Indian Ocean follows. On one horizontal map the phosphate distribution in the surface and 30 m layer gives reference to biological activity. One diagram where nitrogen components are plotted against phosphate shows that nitrate is a limiting factor for productivity. O2/PO4-P and PO4-P/S? diagrams enable the different waterbodies and mixed layers to be characterized.
Resumo:
The Danubs 2000 dataset contains zooplankton data collected in April, June. October and November 2000 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.