738 resultados para Annotation de génomes
Resumo:
The iProClass database is an integrated resource that provides comprehensive family relationships and structural and functional features of proteins, with rich links to various databases. It is extended from ProClass, a protein family database that integrates PIR superfamilies and PROSITE motifs. The iProClass currently consists of more than 200 000 non-redundant PIR and SWISS-PROT proteins organized with more than 28 000 superfamilies, 2600 domains, 1300 motifs, 280 post-translational modification sites and links to more than 30 databases of protein families, structures, functions, genes, genomes, literature and taxonomy. Protein and family summary reports provide rich annotations, including membership information with length, taxonomy and keyword statistics, full family relationships, comprehensive enzyme and PDB cross-references and graphical feature display. The database facilitates classification-driven annotation for protein sequence databases and complete genomes, and supports structural and functional genomic research. The iProClass is implemented in Oracle 8i object-relational system and available for sequence search and report retrieval at http://pir.georgetow n.edu/iproclass/.
Resumo:
There is no control over the information provided with sequences when they are deposited in the sequence databases. Consequently mistakes can seed the incorrect annotation of other sequences. Grouping genes into families and applying controlled annotation overcomes the problems of incorrect annotation associated with individual sequences. Two databases (http://www.mendel.ac.uk) were created to apply controlled annotation to plant genes and plant ESTs: Mendel-GFDb is a database of plant protein (gene) families based on gapped-BLAST analysis of all sequences in the SWISS-PROT family of databases. Sequences are aligned (ClustalW) and identical and similar residues shaded. The families are visually curated to ensure that one or more criteria, for example overall relatedness and/or domain similarity relate all sequences within a family. Sequence families are assigned a ‘Gene Family Number’ and a unified description is developed which best describes the family and its members. If authority exists the gene family is assigned a ‘Gene Family Name’. This information is placed in Mendel-GFDb. Mendel-ESTS is primarily a database of plant ESTs, which have been compared to Mendel-GFDb, completely sequenced genomes and domain databases. This approach associated ESTs with individual sequences and the controlled annotation of gene families and protein domains; the information being placed in Mendel-ESTS. The controlled annotation applied to genes and ESTs provides a basis from which a plant transcription database can be developed.
Resumo:
Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1 000 000 hits from 462 500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.
Resumo:
The Plasmodium falciparum Genome Database (http://PlasmoDB.org) integrates sequence information, automated analyses and annotation data emerging from the P.falciparum genome sequencing consortium. To date, raw sequence coverage is available for >90% of the genome, and two chromosomes have been finished and annotated. Data in PlasmoDB are organized by chromosome (1–14), and can be accessed using a variety of tools for graphical and text-based browsing or downloaded in various file formats. The GUS (Genomics Unified Schema) implementation of PlasmoDB provides a multi-species genomic relational database, incorporating data from human and mouse, as well as P.falciparum. The relational schema uses a highly structured format to accommodate diverse data sets related to genomic sequence and gene expression. Tools have been designed to facilitate complex biological queries, including many that are specific to Plasmodium parasites and malaria as a disease. Additional projects seek to integrate genomic information with the rich data sets now becoming available for RNA transcription, protein expression, metabolic pathways, genetic and physical mapping, antigenic and population diversity, and phylogenetic relationships with other apicomplexan parasites. The overall goal of PlasmoDB is to facilitate Internet- and CD-ROM-based access to both finished and unfinished sequence information by the global malaria research community.
Resumo:
One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes.
Resumo:
The PlantsP database is a curated database that combines information derived from sequences with experimental functional genomics information. PlantsP focuses on plant protein kinases and protein phosphatases. The database will specifically provide a resource for information on a collection of T-DNA insertion mutants (knockouts) in each protein kinase and phosphatase in Arabidopsis thaliana. PlantsP also provides a curated view of each protein that includes a comprehensive annotation of functionally related sequence motifs, sequence family definitions, alignments and phylogenetic trees, and descriptive information drawn directly from the literature. PlantsP is available at http://PlantsP.sdsc.edu.
Resumo:
As the number of protein folds is quite limited, a mode of analysis that will be increasingly common in the future, especially with the advent of structural genomics, is to survey and re-survey the finite parts list of folds from an expanding number of perspectives. We have developed a new resource, called PartsList, that lets one dynamically perform these comparative fold surveys. It is available on the web at http://bioinfo.mbb.yale.edu/partslist and http://www.partslist.org. The system is based on the existing fold classifications and functions as a form of companion annotation for them, providing ‘global views’ of many already completed fold surveys. The central idea in the system is that of comparison through ranking; PartsList will rank the approximately 420 folds based on more than 180 attributes. These include: (i) occurrence in a number of completely sequenced genomes (e.g. it will show the most common folds in the worm versus yeast); (ii) occurrence in the structure databank (e.g. most common folds in the PDB); (iii) both absolute and relative gene expression information (e.g. most changing folds in expression over the cell cycle); (iv) protein–protein interactions, based on experimental data in yeast and comprehensive PDB surveys (e.g. most interacting fold); (v) sensitivity to inserted transposons; (vi) the number of functions associated with the fold (e.g. most multi-functional folds); (vii) amino acid composition (e.g. most Cys-rich folds); (viii) protein motions (e.g. most mobile folds); and (ix) the level of similarity based on a comprehensive set of structural alignments (e.g. most structurally variable folds). The integration of whole-genome expression and protein–protein interaction data with structural information is a particularly novel feature of our system. We provide three ways of visualizing the rankings: a profiler emphasizing the progression of high and low ranks across many pre-selected attributes, a dynamic comparer for custom comparisons and a numerical rankings correlator. These allow one to directly compare very different attributes of a fold (e.g. expression level, genome occurrence and maximum motion) in the uniform numerical format of ranks. This uniform framework, in turn, highlights the way that the frequency of many of the attributes falls off with approximate power-law behavior (i.e. according to V–b, for attribute value V and constant exponent b), with a few folds having large values and most having small values.
Resumo:
Accurate multiple alignments of 86 domains that occur in signaling proteins have been constructed and used to provide a Web-based tool (SMART: simple modular architecture research tool) that allows rapid identification and annotation of signaling domain sequences. The majority of signaling proteins are multidomain in character with a considerable variety of domain combinations known. Comparison with established databases showed that 25% of our domain set could not be deduced from SwissProt and 41% could not be annotated by Pfam. SMART is able to determine the modular architectures of single sequences or genomes; application to the entire yeast genome revealed that at least 6.7% of its genes contain one or more signaling domains, approximately 350 greater than previously annotated. The process of constructing SMART predicted (i) novel domain homologues in unexpected locations such as band 4.1-homologous domains in focal adhesion kinases; (ii) previously unknown domain families, including a citron-homology domain; (iii) putative functions of domain families after identification of additional family members, for example, a ubiquitin-binding role for ubiquitin-associated domains (UBA); (iv) cellular roles for proteins, such predicted DEATH domains in netrin receptors further implicating these molecules in axonal guidance; (v) signaling domains in known disease genes such as SPRY domains in both marenostrin/pyrin and Midline 1; (vi) domains in unexpected phylogenetic contexts such as diacylglycerol kinase homologues in yeast and bacteria; and (vii) likely protein misclassifications exemplified by a predicted pleckstrin homology domain in a Candida albicans protein, previously described as an integrin.
Resumo:
Functional annotation of novel genes can be achieved by detection of interactions of their encoded proteins with known proteins followed by assays to validate that the gene participates in a specific cellular function. We report an experimental strategy that allows for detection of protein interactions and functional assays with a single reporter system. Interactions among biochemical network component proteins are detected and probed with stimulators and inhibitors of the network. In addition, the cellular location of the interacting proteins is determined. We used this strategy to map a signal transduction network that controls initiation of translation in eukaryotes. We analyzed 35 different pairs of full-length proteins and identified 14 interactions, of which five have not been observed previously, suggesting that the organization of the pathway is more ramified and integrated than previously shown. Our results demonstrate the feasibility of using this strategy in efforts of genomewide functional annotation.
Resumo:
Various types of physical mapping data were assembled by developing a set of computer programs (Integrated Mapping Package) to derive a detailed, annotated map of a 4-Mb region of human chromosome 13 that includes the BRCA2 locus. The final assembly consists of a yeast artificial chromosome (YAC) contig with 42 members spanning the 13q12-13 region and aligned contigs of 399 cosmids established by cross-hybridization between the cosmids, which were selected from a chromosome 13-specific cosmid library using inter-Alu PCR probes from the YACs. The end sequences of 60 cosmids spaced nearly evenly across the map were used to generate sequence-tagged sites (STSs), which were mapped to the YACs by PCR. A contig framework was generated by STS content mapping, and the map was assembled on this scaffold. Additional annotation was provided by 72 expressed sequences and 10 genetic markers that were positioned on the map by hybridization to cosmids.
Resumo:
The field of natural language processing (NLP) has seen a dramatic shift in both research direction and methodology in the past several years. In the past, most work in computational linguistics tended to focus on purely symbolic methods. Recently, more and more work is shifting toward hybrid methods that combine new empirical corpus-based methods, including the use of probabilistic and information-theoretic techniques, with traditional symbolic methods. This work is made possible by the recent availability of linguistic databases that add rich linguistic annotation to corpora of natural language text. Already, these methods have led to a dramatic improvement in the performance of a variety of NLP systems with similar improvement likely in the coming years. This paper focuses on these trends, surveying in particular three areas of recent progress: part-of-speech tagging, stochastic parsing, and lexical semantics.
Resumo:
Predecir la función biológica de secuencias de Ácido Desoxirribonucleico (ADN) es unos de los mayores desafíos a los que se enfrenta la Bioinformática. Esta tarea se denomina anotación funcional y es un proceso complejo, laborioso y que requiere mucho tiempo. Dado su impacto en investigaciones y anotaciones futuras, la anotación debe ser lo más able y precisa posible. Idealmente, las secuencias deberían ser estudiadas y anotadas manualmente por un experto, garantizando así resultados precisos y de calidad. Sin embargo, la anotación manual solo es factible para pequeños conjuntos de datos o genomas de referencia. Con la llegada de las nuevas tecnologías de secuenciación, el volumen de datos ha crecido signi cativamente, haciendo aún más crítica la necesidad de implementaciones automáticas del proceso. Por su parte, la anotación automática es capaz de manejar grandes cantidades de datos y producir un análisis consistente. Otra ventaja de esta aproximación es su rapidez y bajo coste en relación a la manual. Sin embargo, sus resultados son menos precisos que los manuales y, en general, deben ser revisados ( curados ) por un experto. Aunque los procesos colaborativos de la anotación en comunidad pueden ser utilizados para reducir este cuello de botella, los esfuerzos en esta línea no han tenido hasta ahora el éxito esperado. Además, el problema de la anotación, como muchos otros en el dominio de la Bioinformática, abarca información heterogénea, distribuida y en constante evolución. Una posible aproximación para superar estos problemas consiste en cambiar el foco del proceso de los expertos individuales a su comunidad, y diseñar las herramientas de manera que faciliten la gestión del conocimiento y los recursos. Este trabajo adopta esta línea y propone MASSA (Multi-Agent System to Support functional Annotation), una arquitectura de Sistema Multi-Agente (SMA) para Soportar la Anotación funcional...
Resumo:
Aportaciones sobre la investigación de los destinos turísticos litorales mediterráneos, vertidas en el marco las jornadas de intercambio y transferencia de resultados celebradas en mayo de 2010, con la participación del Grupo de Investigación sobre Sostenibilidad y Territorio (GIST) de la Universidad de les Illes Balears, el Grupo de Investigación en Análisis Territorial y Estudios Turísticos (GRATET) de la Universidad Rovira i Virgili y el Grupo de Investigación en Planificación y Gestión Sostenible del Turismo de la Universidad de Alicante. Durante la mismas se debatieron y avanzaron planteamientos teóricos, metodológicos y aplicados acerca de la implantación territorial del turismo en el litoral Mediterráneo español.
Resumo:
The importance of the new textual genres such as blogs or forum entries is growing in parallel with the evolution of the Social Web. This paper presents two corpora of blog posts in English and in Spanish, annotated according to the EmotiBlog annotation scheme. Furthermore, we created 20 factual and opinionated questions for each language and also the Gold Standard for their answers in the corpus. The purpose of our work is to study the challenges involved in a mixed fact and opinion question answering setting by comparing the performance of two Question Answering (QA) systems as far as mixed opinion and factual setting is concerned. The first one is open domain, while the second one is opinion-oriented. We evaluate separately the two systems in both languages and propose possible solutions to improve QA systems that have to process mixed questions.
Resumo:
This paper shows a system about the recognition of temporal expressions in Spanish and the resolution of their temporal reference. For the identification and recognition of temporal expressions we have based on a temporal expression grammar and for the resolution on an inference engine, where we have the information necessary to do the date operation based on the recognized expressions. For further information treatment, the output is proposed by means of XML tags in order to add standard information of the resolution obtained. Different kinds of annotation of temporal expressions are explained in another articles [WILSON2001][KATZ2001]. In the evaluation of our proposal we have obtained successful results.