969 resultados para Annealing temperature
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
c-axis-oriented YBa2Cu3O7-x (YBCO) thin films were laser deposited on (001) yttria-stabilized ZrO2 (YSZ) substrates with different surface morphologies. The in-plane orientation of the films on smooth substrates was sensitive to the deposition conditions, often resulting in mixed orientations. However, a strongly dominating [110] YBCO//[110]YSZ orientation was obtained at a deposition temperature of 770°C. Films on substrates with surface steps, induced by depositing a homoepitaxial buffer layer or by thermally annealing the substrate, had a [110]YBCO//[100]YSZ orientation when deposited at the same temperature. It was concluded that the [110]YBCO//[100] YSZ orientation was promoted by a graphoepitaxial mechanism. Films prepared under identical conditions on smooth and stepped substrates grew with extended c axes on the former. It is proposed that the extension can be induced by disorder, invoked by a low oxygen pressure and a low density of adsorption sites. The disorder may be eliminated by either an increase of the oxygen pressure or an increase of the density of adsorption sites in the form of steps. The film microstructure influenced the microwave surface resistance, which was similar for films with one exclusive in-plane orientation and higher for films with mixed orientations. The films on the stepped surfaces had superior superconducting properties; inductive measurements gave a Tc onset of 88 K, a ΔT(90%-10%) c of 0.2 K, and the transport jc was 1.5×106 A/cm2 at 83 K, for films on substrates with homoepitaxial buffer layers.
Resumo:
The formation of readily recoverable and reusable organic semiconducting Cu- and AgTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) microstructures decorated with Pt and Pd metallic nanoparticles is described for the effective reduction of CrVI ions in aqueous solution at room temperature using both formic acid and an environmentally friendly thiosulfate reductant. The M-TCNQ (M=metal) materials were formed by electrocrystallisation onto a glassy carbon surface followed by galvanic replacement in the presence of H2PtCl6 or PdCl2 to form the composite material. It was found that loading of the surface with nanoparticles could easily be controlled by changing the metal salt concentration. Significantly, the M-TCNQ substrates facilitated the formation of well-isolated metal nanoparticles on their surfaces under appropriate galvanic replacement conditions. The semiconductor–metal nanoparticle combination was also found to be critical to the catalyst performance, wherein the best-performing material was CuTCNQ modified by well-isolated Pt nanoparticles with both formic acid and thiosulfate ions as the reductant.
The health effects of temperature : current estimates, future projections, and adaptation strategies
Resumo:
Climate change is expected to be one of the biggest global health threats in the 21st century. In response to changes in climate and associated extreme events, public health adaptation has become imperative. This thesis examined several key issues in this emerging research field. The thesis aimed to identify the climate-health (particularly temperature-health) relationships, then develop quantitative models that can be used to project future health impacts of climate change, and therefore help formulate adaptation strategies for dealing with climate-related health risks and reducing vulnerability. The research questions addressed by this thesis were: (1) What are the barriers to public health adaptation to climate change? What are the research priorities in this emerging field? (2) What models and frameworks can be used to project future temperature-related mortality under different climate change scenarios? (3) What is the actual burden of temperature-related mortality? What are the impacts of climate change on future burden of disease? and (4) Can we develop public health adaptation strategies to manage the health effects of temperature in response to climate change? Using a literature review, I discussed how public health organisations should implement and manage the process of planned adaptation. This review showed that public health adaptation can operate at two levels: building adaptive capacity and implementing adaptation actions. However, there are constraints and barriers to adaptation arising from uncertainty, cost, technologic limits, institutional arrangements, deficits of social capital, and individual perception of risks. The opportunities for planning and implementing public health adaptation are reliant on effective strategies to overcome likely barriers. I proposed that high priorities should be given to multidisciplinary research on the assessment of potential health effects of climate change, projections of future health impacts under different climate and socio-economic scenarios, identification of health cobenefits of climate change policies, and evaluation of cost-effective public health adaptation options. Heat-related mortality is the most direct and highly-significant potential climate change impact on human health. I thus conducted a systematic review of research and methods for projecting future heat-related mortality under different climate change scenarios. The review showed that climate change is likely to result in a substantial increase in heatrelated mortality. Projecting heat-related mortality requires understanding of historical temperature-mortality relationships, and consideration of future changes in climate, population and acclimatisation. Further research is needed to provide a stronger theoretical framework for mortality projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution and mortality displacement. Most previous studies were designed to examine temperature-related excess deaths or mortality risks. However, if most temperature-related deaths occur in the very elderly who had only a short life expectancy, then the burden of temperature on mortality would have less public health importance. To guide policy decisions and resource allocation, it is desirable to know the actual burden of temperature-related mortality. To achieve this, I used years of life lost to provide a new measure of health effects of temperature. I conducted a time-series analysis to estimate years of life lost associated with changes in season and temperature in Brisbane, Australia. I also projected the future temperaturerelated years of life lost attributable to climate change. This study showed that the association between temperature and years of life lost was U-shaped, with increased years of life lost on cold and hot days. The temperature-related years of life lost will worsen greatly if future climate change goes beyond a 2 °C increase and without any adaptation to higher temperatures. The excess mortality during prolonged extreme temperatures is often greater than the predicted using smoothed temperature-mortality association. This is because sustained period of extreme temperatures produce an extra effect beyond that predicted by daily temperatures. To better estimate the burden of extreme temperatures, I estimated their effects on years of life lost due to cardiovascular disease using data from Brisbane, Australia. The results showed that the association between daily mean temperature and years of life lost due to cardiovascular disease was U-shaped, with the lowest years of life lost at 24 °C (the 75th percentile of daily mean temperature in Brisbane), rising progressively as temperatures become hotter or colder. There were significant added effects of heat waves, but no added effects of cold spells. Finally, public health adaptation to hot weather is necessary and pressing. I discussed how to manage the health effects of temperature, especially with the context of climate change. Strategies to minimise the health effects of high temperatures and climate change can fall into two categories: reducing the heat exposure and managing the health effects of high temperatures. However, policy decisions need information on specific adaptations, together with their expected costs and benefits. Therefore, more research is needed to evaluate cost-effective adaptation options. In summary, this thesis adds to the large body of literature on the impacts of temperature and climate change on human health. It improves our understanding of the temperaturehealth relationship, and how this relationship will change as temperatures increase. Although the research is limited to one city, which restricts the generalisability of the findings, the methods and approaches developed in this thesis will be useful to other researchers studying temperature-health relationships and climate change impacts. The results may be helpful for decision-makers who develop public health adaptation strategies to minimise the health effects of extreme temperatures and climate change.
Resumo:
Bi-2212 thick film on silver tapes are seen as a simple and low cost alternative to high temperature superconducting wires produced by the Powder In Thbe (PIT) technique, particularly in react and wind applications. A rig for the continuous production of Bi-2212 tapes for use in react and wind component manufacture has been developed and commissioned. The rig consists of several sections, each fully automatic, for task specific duties in the production of HTS tape. The major sections are: tape coating, sintering and annealing. High temperature superconducting tapes with engineering critical current densities of 10 kA/cm2 (77 K, self field), and lengths of up to 100 m have been produced using the rig. Properties of the finished tape are discussed and results are presented for current density versus bend radius and applied strain. Depending on tape content and thickness, irreversible strain tirrm varies between 0.04 and 0.1 %. Cyclic bending tests when applied strain does not exceed Eirrm showed negligible reduction in J c along the length of the tape.
Resumo:
Despite research that has been conducted elsewhere, little is known, to-date, about land cover dynamics and their impacts on land surface temperature (LST) in fast growing mega cities of developing countries. Landsat satellite images of 1989, 1999, and 2009 of Dhaka Metropolitan (DMP) area were used for analysis. This study first identified patterns of land cover changes between the periods and investigated their impacts on LST; second, applied artificial neural network to simulate land cover changes for 2019 and 2029; and finally, estimated their impacts on LST in respective periods. Simulation results show that if the current trend continues, 56% and 87% of the DMP area will likely to experience temperatures in the range of greater than or equal to 30°C in 2019 and 2029, respectively. The findings possess a major challenge for urban planners working in similar contexts. However, the technique presented in this paper would help them to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures.
Resumo:
Microwave power is used for heating and drying processes because of its faster and volumetric heating capability. Non-uniform temperature distribution during microwave application is a major drawback of these processes. Intermittent application of microwave potentially reduces the impact of non-uniformity and improves energy efficiency by redistributing the temperature. However, temperature re-distribution during intermittent microwave heating has not been investigated adequately. Consequently, in this study, a coupled electromagnetic with heat and mass transfer model was developed using the finite element method embedded in COMSOL-Multyphysics software. Particularly, the temperature redistribution due to intermittent heating was investigated. A series of experiments were performed to validate the simulation. The test specimen was an apple and the temperature distribution was closely monitored by a TIC (Thermal Imaging Camera). The simulated temperature profile matched closely with thermal images obtained from experiments.
Resumo:
Chemical vapor deposition (CVD) is widely utilized to synthesize graphene with controlled properties for many applications, especially when continuous films over large areas are required. Although hydrocarbons such as methane are quite efficient precursors for CVD at high temperature (∼1000 °C), finding less explosive and safer carbon sources is considered beneficial for the transition to large-scale production. In this work, we investigated the CVD growth of graphene using ethanol, which is a harmless and readily processable carbon feedstock that is expected to provide favorable kinetics. We tested a wide range of synthesis conditions (i.e., temperature, time, gas ratios), and on the basis of systematic analysis by Raman spectroscopy, we identified the optimal parameters for producing highly crystalline graphene with different numbers of layers. Our results demonstrate the importance of high temperature (1070 °C) for ethanol CVD and emphasize the significant effects that hydrogen and water vapor, coming from the thermal decomposition of ethanol, have on the crystal quality of the synthesized graphene.
Resumo:
Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.
Resumo:
The ability to measure surface temperature and represent it on a metrically accurate 3D model has proven applications in many areas such as medical imaging, building energy auditing, and search and rescue. A system is proposed that enables this task to be performed with a handheld sensor, and for the first time with results able to be visualized and analyzed in real-time. A device comprising a thermal-infrared camera and range sensor is calibrated geometrically and used for data capture. The device is localized using a combination of ICP and video-based pose estimation from the thermal-infrared video footage which is shown to reduce the occurrence of failure modes. Furthermore, the problem of misregistration which can introduce severe distortions in assigned surface temperatures is avoided through the use of a risk-averse neighborhood weighting mechanism. Results demonstrate that the system is more stable and accurate than previous approaches, and can be used to accurately model complex objects and environments for practical tasks.
Resumo:
Background Transmission of Plasmodium vivax malaria is dependent on vector availability, biting rates and parasite development. In turn, each of these is influenced by climatic conditions. Correlations have previously been detected between seasonal rainfall, temperature and malaria incidence patterns in various settings. An understanding of seasonal patterns of malaria, and their weather drivers, can provide vital information for control and elimination activities. This research aimed to describe temporal patterns in malaria, rainfall and temperature, and to examine the relationships between these variables within four counties of Yunnan Province, China. Methods Plasmodium vivax malaria surveillance data (1991–2006), and average monthly temperature and rainfall were acquired. Seasonal trend decomposition was used to examine secular trends and seasonal patterns in malaria. Distributed lag non-linear models were used to estimate the weather drivers of malaria seasonality, including the lag periods between weather conditions and malaria incidence. Results There was a declining trend in malaria incidence in all four counties. Increasing temperature resulted in increased malaria risk in all four areas and increasing rainfall resulted in increased malaria risk in one area and decreased malaria risk in one area. The lag times for these associations varied between areas. Conclusions The differences detected between the four counties highlight the need for local understanding of seasonal patterns of malaria and its climatic drivers.
Resumo:
Material yielding is typically modeled either by plastic zone or plastic hinge methods under the context of geometric and material nonlinear finite element methods. In fire analysis of steel structures, the plastic zone method is widely used, but it requires extensively more computational efforts. The objective of this paper is to develop the nonlinear material model allowing for interaction of both axial force and bending moment, which relies on the plastic hinge method to achieve numerical efficiency and reduce computational effort. The biggest advantage of the plastic-hinge approach is its computational efficiency and easy verification by the design code formulae of the axial force–moment interaction yield criterion for beam–column members. Further, the method is reliable and robust when used in analysis of practical and large structures. In order to allow for the effect of catenary action, axial thermal expansion is considered in the axial restraint equations. The yield function for material yielding incorporated in the stiffness formulation, which allows for both axial force and bending moment effects, is more accurate and rational to predict the behaviour of the frames under fire. In the present fire analysis, the mechanical properties at elevated temperatures follow mainly the Eurocode 3 [Design of steel structures, Part 1.2: Structural fire design. European Committee for Standisation; 2003]. Example of a tension member at a steady state heating condition is modeled to verify the proposed spring formulation and to compare with results by others. The behaviour of a heated member in a highly redundant structure is also studied by the present approach.
Resumo:
Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.
Resumo:
The relationship between temperature and mortality is generally found to be bathtub shaped (rising at both extremes). However, there are limited data on the potential health effects of temperature variability and on temperature itself...