911 resultados para Angiotensin-converting enzyme inhibitors
Resumo:
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.
Resumo:
The aspartic protease BACE1 (β-amyloid precursor protein cleaving enzyme, β-secretase) is recognized as one of the most promising targets in the treatment of Alzheimer's disease (AD). The accumulation of β-amyloid peptide (Aβ) in the brain is a major factor in the pathogenesis of AD. Aβ is formed by initial cleavage of β-amyloid precursor protein (APP) by β-secretase, therefore BACE1 inhibition represents one of the therapeutic approaches to control progression of AD, by preventing the abnormal generation of Aβ. For this reason, in the last decade, many research efforts have focused at the identification of new BACE1 inhibitors as drug candidates. Generally, BACE1 inhibitors are grouped into two families: substrate-based inhibitors, designed as peptidomimetic inhibitors, and non-peptidomimetic ones. The research on non-peptidomimetic small molecules BACE1 inhibitors remains the most interesting approach, since these compounds hold an improved bioavailability after systemic administration, due to a good blood-brain barrier permeability in comparison to peptidomimetic inhibitors. Very recently, our research group discovered a new promising lead compound for the treatment of AD, named lipocrine, a hybrid derivative between lipoic acid and the AChE inhibitor (AChEI) tacrine, characterized by a tetrahydroacridinic moiety. Lipocrine is one of the first compounds able to inhibit the catalytic activity of AChE and AChE-induced amyloid-β aggregation and to protect against reactive oxygen species. Due to this interesting profile, lipocrine was also evaluated for BACE1 inhibitory activity, resulting in a potent lead compound for BACE1 inhibition. Starting from this interesting profile, a series of tetrahydroacridine analogues were synthesised varying the chain length between the two fragments. Moreover, following the approach of combining in a single molecule two different pharmacophores, we designed and synthesised different compounds bearing the moieties of known AChEIs (rivastigmine and caproctamine) coupled with lipoic acid, since it was shown that dithiolane group is an important structural feature of lipocrine for the optimal inhibition of BACE1. All the tetrahydroacridines, rivastigmine and caproctamine-based compounds, were evaluated for BACE1 inhibitory activity in a FRET (fluorescence resonance energy transfer) enzymatic assay (test A). With the aim to enhancing the biological activity of the lead compound, we applied the molecular simplification approach to design and synthesize novel heterocyclic compounds related to lipocrine, in which the tetrahydroacridine moiety was replaced by 4-amino-quinoline or 4-amino-quinazoline rings. All the synthesized compounds were also evaluated in a modified FRET enzymatic assay (test B), changing the fluorescent substrate for enzymatic BACE1 cleavage. This test method guided deep structure-activity relationships for BACE1 inhibition on the most promising quinazoline-based derivatives. By varying the substituent on the 2-position of the quinazoline ring and by replacing the lipoic acid residue in lateral chain with different moieties (i.e. trans-ferulic acid, a known antioxidant molecule), a series of quinazoline derivatives were obtained. In order to confirm inhibitory activity of the most active compounds, they were evaluated with a third FRET assay (test C) which, surprisingly, did not confirm the previous good activity profiles. An evaluation study of kinetic parameters of the three assays revealed that method C is endowed with the best specificity and enzymatic efficiency. Biological evaluation of the modified 2,4-diamino-quinazoline derivatives measured through the method C, allow to obtain a new lead compound bearing the trans-ferulic acid residue coupled to 2,4-diamino-quinazoline core endowed with a good BACE1 inhibitory activity (IC50 = 0.8 mM). We reported on the variability of the results in the three different FRET assays that are known to have some disadvantages in term of interference rates that are strongly dependent on compound properties. The observed results variability could be also ascribed to different enzyme origin, varied substrate and different fluorescent groups. The inhibitors should be tested on a parallel screening in order to have a more reliable data prior to be tested into cellular assay. With this aim, preliminary cellular BACE1 inhibition assay carried out on lipocrine confirmed a good cellular activity profile (EC50 = 3.7 mM) strengthening the idea to find a small molecule non-peptidomimetic compound as BACE1 inhibitor. In conclusion, the present study allowed to identify a new lead compound endowed with BACE1 inhibitory activity in submicromolar range. Further lead optimization to the obtained derivative is needed in order to obtain a more potent and a selective BACE1 inhibitor based on 2,4-diamino-quinazoline scaffold. A side project related to the synthesis of novel enzymatic inhibitors of BACE1 in order to explore the pseudopeptidic transition-state isosteres chemistry was carried out during research stage at Università de Montrèal (Canada) in Hanessian's group. The aim of this work has been the synthesis of the δ-aminocyclohexane carboxylic acid motif with stereochemically defined substitution to incorporating such a constrained core in potential BACE1 inhibitors. This fragment, endowed with reduced peptidic character, is not known in the context of peptidomimetic design. In particular, we envisioned an alternative route based on an organocatalytic asymmetric conjugate addition of nitroalkanes to cyclohexenone in presence of D-proline and trans-2,5-dimethylpiperazine. The enantioenriched obtained 3-(α-nitroalkyl)-cyclohexanones were further functionalized to give the corresponding δ-nitroalkyl cyclohexane carboxylic acids. These intermediates were elaborated to the target structures 3-(α-aminoalkyl)-1-cyclohexane carboxylic acids in a new readily accessible way.
Resumo:
According to the amyloid hypothesis, Alzheimer’s disease (AD) is caused by aberrant production or clearance of the amyloid-β (Aβ) peptides, and in particular of the longer more aggregation-prone Aβ42. The Aβ peptides are generated through successive proteolytic cleavage of the amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE) and γ-secretase. γ-secretase produces Aβ peptides with variable C-termini ranging from Aβ34 to Aβ48, presumably by sequential trimming of longer into shorter peptides. γ-secretase is a multiprotein complex consisting of at least four different proteins and the presenilin proteins (PS1 or PS2) contain the catalytic center of the complex. In 2001 several non-steroidal anti-inflammatory drugs were identified as the founding members of a new class of γ-secretase modulators (GSMs) that can selectively reduce production of Aβ42. Concomitantly, these GSMs increase Aβ38 production indicating closely coordinated generation of Aβ42 and Aβ38 and a potential precursor-product relationship between these peptides. GSMs seem to exert their activity by direct modulation of γ-secretase. Support for this hypothesis is drawn from the finding that some PS mutations associated with early-onset familial AD (FAD) can modulate the cellular response to GSMs and to γ-secretase inhibitors (GSIs), which inhibit production of all Aβ peptides and are known to directly interact with PS. A particularly interesting FAD PS mutation is PS1-ΔExon9, a complex deletion mutant that blocks endoproteolysis of PS1 and renders cells completely non-responsive to GSMs. Studies presented in this thesis show that the diminished response of PS1-ΔExon9 to GSMs is mainly caused by its lack of endoproteolytic cleavage. Furthermore, we were able to demonstrate that a reduced response to GSMs and GSIs is not limited to PS1-ΔExon9 but is a common effect of aggressive FAD-associated PS1 mutations. Surprisingly, we also found that while the Aβ42 response to GSMs is almost completely abolished by these PS1 mutations, the accompanying Aβ38 increase was indistinguishable to wild-type PS1. Finally, the reduced response to GSIs was confirmed in a mouse model with transgenic expression of an aggressive FAD-associated PS1 mutation as a highly potent GSI failed to reduce Aβ42 levels in brain of these mice. Taken together, our findings provide clear evidence for independent generation of Aβ42 and Aβ38 peptides, and argue that the sequential cleavage model might be an oversimplification of the molecular mechanism of γ-secretase. Most importantly, our results highlight the significance of genetic background in drug discovery efforts aimed at γ-secretase, and indicate that the use of cellular models with transgenic expression of FAD-associated PS mutations might confound studies of the potency and efficacy of GSMs and GSIs. Therefore, such models should be strictly avoided in the ongoing preclinical development of these promising and potentially disease-modifying therapeutics for AD.
Resumo:
Nukleosidmodifikationen beeinflussen Dynamik und Konformation von RNArnund sind epigenetisch wirksam. Wenig verstanden sind konformationelle Dynamik und enzymatische Erkennung von tRNA, sowie der Einfluss des mutmaßlichen kovalenten Inhibitors 5-Fluorouridine (5FU) auf Y Synthasen, die Pseudouridin (Y) erzeugen. Frühere Arbeiten nutzten mit den Fluorophoren Cy3 und Cy5rnmarkierte tRNA, um diese Fragen zu adressieren.rnDie vorliegende Arbeit weitet Cy3-Cy5-Markierung auf Hefe tRNArnPhernaus undrnnutzt Thermophorese und fortschrittliche Fluoreszenzspektroskopie. In der Thermophorese zeigte sich eine hohe Toleranz gegenüber Fluoreszenzmarkierung beirngleichzeitiger Erhöhung der Cy5 Fluoreszenz durch Enzymbindung. Zudem konnte die Konformation verschiedener Mutanten human mitochondrialer tRNArnLysrnund die Bindung von SAM durch SAM-I Riboswitch RNA untersucht werden.rnUm etwaige Unterschiede in der Interaktion von Y55 Synthase TruB mit Cy5-gelabelter U55- bzw. 5FU55-tRNA aufzudecken, wurde eine Kombination ausrnThermophorese, zeit- und polarisationsaufgelöster Fluoreszenzspektroskopie undrn’gel shift’ Experimenten genutzt. Alle Ergebnisse zeigten übereinstimmend einernreversible Bindung ähnlicher Affinität für beide tRNAs und widersprechen somit einer kovalenten Inhibition durch 5FU. Folgerichtig wurde der SDS-stabilernKomplex von TruB mit 5FU-tRNA neu evaluiert, da er bisher als kovalent interpretiert wurde. Es erfolgte eine schnelle Komplexbildung in hoher Ausbeute auchrnfür schlechte Substrate, außerdem ließ sich die Komplexausbeute nicht durch andere Reaktionsbedingungen beeinflussen. Somit kann der SDS stabile Komplexrnnur den ersten, nicht-kovalenten Kontakt von Enzym und 5FU55-tRNA darstellen und repräsentiert kein kovalentes Addukt späterer Katalyse.
Resumo:
The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cell proliferation and survival and is frequently activated by genetic and epigenetic alterations in human cancer. An arsenal of pharmacological inhibitors of key signaling enzymes in this pathway, including class I(A) PI3K isoforms, has been developed in the past decade and several compounds have entered clinical testing in cancer patients. The PIK3CA/p110α isoform is the most studied enzyme of the family and a validated cancer target. The induction of autophagy by PI3K pathway inhibitors has been documented in various cancers, although a clear picture about the significance of this phenomenon is still missing, especially in the in vivo situation. A better understanding of the contribution of autophagy to the action of PI3K inhibitors on tumors cells is important, since it may limit or enhance the action of these compounds, depending on the cellular context.
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. Inhibition of 11beta-HSD1 has considerable therapeutic potential for glucocorticoid-associated diseases including obesity, diabetes, wound healing, and muscle atrophy. Because inhibition of related enzymes such as 11beta-HSD2 and 17beta-HSDs causes sodium retention and hypertension or interferes with sex steroid hormone metabolism, respectively, highly selective 11beta-HSD1 inhibitors are required for successful therapy. Here, we employed the software package Catalyst to develop ligand-based multifeature pharmacophore models for 11beta-HSD1 inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed several selective inhibitors. Efficient inhibition of recombinant human 11beta-HSD1 in intact transfected cells as well as endogenous enzyme in mouse 3T3-L1 adipocytes and C2C12 myotubes was demonstrated for compound 27, which was able to block subsequent cortisol-dependent activation of glucocorticoid receptors with only minor direct effects on the receptor itself. Our results suggest that inhibitor-based pharmacophore models for 11beta-HSD1 in combination with suitable cell-based activity assays, including such for related enzymes, can be used for the identification of selective and potent inhibitors.
Resumo:
Preeclampsia (PE), a syndrome affecting 5% of pregnancies, characterized by hypertension and proteinuria, is a leading cause of maternal and fetal morbidity and mortality. The condition is often accompanied by the presence of a circulating maternal autoantibody, the angiotensin II type I receptor agonistic autoantibody (AT(1)-AA). However, the prevalence of AT(1)-AA in PE remains unknown, and the correlation of AT(1)-AA titers with the severity of the disease remains undetermined. We used a sensitive and high-throughput luciferase bioassay to detect AT(1)-AA levels in the serum of 30 normal, 37 preeclamptic (10 mild and 27 severe), and 23 gestational hypertensive individuals. Here we report that AT(1)-AA is highly prevalent in PE ( approximately 95%). Next, by comparing the levels of AT(1)-AA among women with mild and severe PE, we found that the titer of AT(1)-AA is proportional to the severity of the disease. Intriguingly, among severe preeclamptic patients, we discovered that the titer of AT(1)-AA is significantly correlated with the clinical features of PE: systolic blood pressure (r=0.56), proteinuria (r=0.70), and soluble fms-like tyrosine kinase-1 level (r=0.71), respectively. Notably, only AT(1)-AA, and not soluble fms-like tyrosine kinase-1, levels are elevated in gestational hypertensive patients. These data serve as compelling clinical evidence that AT(1)-AA is highly prevalent in PE, and its titer is strongly correlated to the severity of the disease.
Resumo:
Objective. Itraconazole is recommended life-long for preventing relapse of disseminated histoplasmosis in HIV-infected patients. I sought to determine if serum itraconazole levels are affected by the type of Highly Active Anti-Retroviral Therapy (NNRTI or PI) being taken concomitantly to treat HIV. ^ Design. Retrospective cohort. ^ Methods. De-identified data were used from an IRB-approved parent study which identified patients on HAART and maintenance itraconazole for confirmed disseminated histoplasmosis between January 2003 and December 2006. Available itraconazole blood levels were abstracted as well as medications taken by each patient at the time of the blood tests. Mean itraconazole levels were compared using the student's t-test. ^ Results. 11 patients met study criteria. Patient characteristics were: median age 36, 91% men, 18% white, 18% black, 55% Hispanic and 9% Asians, median CD4 cell count 120 cells/mm3. 14 blood levels were available for analysis—8 on PI, 4 on NNRTI and 2 on both. 8/8 itraconazole levels obtained while taking concomitant PI were therapeutic (>0.4 μg/mL) in contrast to 0/4 obtained while taking NNRTI. Two patients switched from NNRTI to PI and reached therapeutic levels. Mean levels on NNRTI (0.05 μg/mL, s.d. 0.0) and on PI (2.45 μg/mL, s.d. 0.21) for these two patients were compared via a paired t-test (t = 16.00, d.f. = 1, P = 0.04). Remaining patient levels were compared using an unpaired t-test. Mean itraconazole on concomitant PI (n = 6) was 1.37 μg/mL (s.d. 0.74), while the mean on concomitant NNRTI was 0.05 μg/mL (s.d. 0.0), t = 2.39, d.f. = 6, P = 0.05. ^ Conclusions. Co-administration of NNRTI and itraconazole results in significant decreases in itraconazole blood levels, likely by inducing the CYP3A4 enzyme system. Itraconazole drug levels should be monitored in patients on concomitant NNRTI. PI-based HAART may be preferred over NNRTI-based HAART when using itraconazole to treat HIV-infected patients with disseminated histoplasmosis. ^
Resumo:
The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^
Resumo:
Plant proteolysis is a metabolic process where specific enzymes called peptidases degrade proteins. In plants, this complex process involves broad metabolic networks and different sub-cellular compartments. Several types of peptidases take part in the proteolytic process, mainly cysteine-, serine-, aspartyl- and metallo- peptidases. Among the cysteine-peptidases, the papain-like or C1A peptidases (family C1, clan CA) are extensively present in land plants and are classified into catepsins L-, B-, H- and Flike. The catalytic mechanism of these C1A peptidases is highly conserved and involves the three amino acids Cys, His and Asn in the catalytic triad, and a Gln residue which seems essential for maintaining an active enzyme conformation. These proteins are synthesized as inactive precursors, which comprise an N-terminal signal peptide, a propeptide, and the mature protein. In barley, we have identified 33 cysteine-peptidases from the papain-like family, classifying them into 8 different groups. Five of them corresponded to cathepsins L-like (5 subgroups), 1 cathepsin B-like group, 1 cathepsin F-like group and 1 cathepsin H-like group. Besides, C1A peptidases are the specific targets of the plant proteinaceous inhibitors known as phytocystatins (PhyCys). The cystatin inhibitory mechanism is produced by a tight and reversible interaction with their target enzymes. In barley, the cystatin gene family is comprised by 13 members. In this work we have tried to elucidate the role of the C1A cysteine-peptidases and their specific inhibitors (cystatins) in the germination process of the barley grain. Therefore, we selected a representative member of each group/subgroup of C1A peptidases (1 cathepsin B-like, 1 cathepsin F-like, 1 cathepsin H-like and 5 cathepsins L-like). The molecular characterization of the cysteine-peptidases was done and the peptidase-inhibitor interaction was analyzed in vitro and in vivo. A study in the structural basis for specificity of pro-peptide/enzyme interaction in barley C1A cysteine-peptidases has been also carried out by inhibitory assays and the modeling of the three-dimensional structures. The barley grain maturation produces the accumulation of storage proteins (prolamins) in the endosperm which are mobilized during germination to supply the required nutrients until the photosynthesis is fully established. In this work, we have demonstrated the participation of the cysteine-peptidases and their inhibitors in the degradation of the different storage protein fractions (hordeins, albumins and globulins) present in the barley grain. Besides, transgenic barley plants overexpressing or silencing cysteine-peptidases or cystatins were obtained by Agrobacterium-mediated transformation of barley immature embryos to analyze their physiological function in vivo. Preliminary assays were carried out with the T1 grains of several transgenic lines. Comparing the knock-out and the overexpressing lines with the WT, alterations in the germination process were detected and were correlated with their grain hordein content. These data will be validated with the homozygous grains that are being produced through the double haploid technique by microspore culture. Resumen La proteólisis es un proceso metabólico por el cual se lleva a cabo la degradación de las proteínas de un organismo a través de enzimas específicas llamadas proteasas. En plantas, este complejo proceso comprende un entramado de rutas metabólicas que implican, además, diferentes compartimentos subcelulares. En la proteólisis participan numerosas proteasas, principalmente cisteín-, serín-, aspartil-, y metalo-proteasas. Dentro de las cisteín-proteasas, las proteasas tipo papaína o C1A (familia C1, clan CA) están extensamente representadas en plantas terrestres, y se clasifican en catepsinas tipo L, B, H y F. El mecanismo catalítico de estas proteasas está altamente conservado y la triada catalítica formada por los aminoácidos Cys, His y Asn, y a un aminoácido Gln, que parece esencial para el mantenimiento de la conformación activa de la proteína. Las proteasas C1A se sintetizan como precursores inactivos y comprenden un péptido señal en el extremo N-terminal, un pro-péptido y la proteína madura. En cebada hemos identificado 33 cisteín-proteasas de tipo papaína y las hemos clasificado filogenéticamente en 8 grupos diferentes. Cinco de ellos pertenecen a las catepsinas tipo L (5 subgrupos), un grupo a las catepsinas tipo-B, otro a las catepsinas tipo-F y un último a las catepsinas tipo-H. Las proteasas C1A son además las dianas específicas de los inhibidores protéicos de plantas denominados fitocistatinas. El mecanismo de inhibición de las cistatinas está basado en una fuerte interacción reversible. En cebada, se conoce la familia génica completa de las cistatinas, que está formada por 13 miembros. En el presente trabajo se ha investigado el papel de las cisteín-proteasas de cebada y sus inhibidores específicos en el proceso de la germinación de la semilla. Para ello, se seleccionó una proteasa representante de cada grupo/subgrupo (1 catepsina tipo- B, 1 tipo-F, 1 tipo-H, y 5 tipo-L, una por cada subgrupo). Se ha llevado a cabo su caracterización molecular y se ha analizado la interacción enzima-inhibidor tanto in vivo como in vitro. También se han realizado estudios sobre las bases estructurales que demuestran la especificidad en la interacción enzima/propéptido en las proteasas C1A de cebada, mediante ensayos de inhibición y la predicción de modelos estructurales de la interacción. Finalmente, y dado que durante la maduración de la semilla se almacenan proteínas de reserva (prolaminas) en el endospermo que son movilizadas durante la germinación para suministrar los nutrientes necesarios hasta que la nueva planta pueda realizar la fotosíntesis, en este trabajo se ha demostrado la participación de las cisteínproteasas y sus inhibidores en la degradación de las diferentes tipos de proteínas de reserva (hordeinas, albúmins y globulinas) presentes en el grano de cebada. Además, se han obtenido plantas transgénicas de cebada que sobre-expresan o silencian cistatinas y cisteín-proteasas con el fin de analizar la función fisiológica in vivo. Se han realizado análisis preliminares en las semillas T1 de varias líneas tránsgenicas de cebada y al comparar las líneas knock-out y las líneas de sobre-expresión con las silvestres, se han detectado alteraciones en la germinación que están además correlacionadas con el contenido de hordeinas de las semillas. Estos datos serán validados en las semillas homocigotas que se están generando mediante la técnica de dobles haploides a partir del cultivo de microesporas.
Resumo:
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.
Resumo:
By using molecular dynamics simulations, we have examined the binding of a hexaNAG substrate and two potential hydrolysis intermediates (an oxazoline ion and an oxocarbenium ion) to a family 19 barley chitinase. We find the hexaNAG substrate binds with all sugars in a chair conformation, unlike the family 18 chitinase which causes substrate distortion. Glu 67 is in a position to protonate the anomeric oxygen linking sugar residues D and E whereas Asn 199 serves to hydrogen bond with the C2′ N-acetyl group of sugar D, thus preventing the formation of an oxazoline ion intermediate. In addition, Glu 89 is part of a flexible loop region allowing a conformational change to occur within the active site to bring the oxocarbenium ion intermediate and Glu 89 closer by 4–5 Å. A hydrolysis product with inversion of the anomeric configuration occurs because of nucleophilic attack by a water molecule that is coordinated by Glu 89 and Ser 120. Issues important for the design of inhibitors specific to family 19 chitinases over family 18 chitinases also are discussed.
Resumo:
Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC50 ≈ 500 nM). The mechanism of inhibition is suggested to involve a serotonin N-acetyltransferase-catalyzed alkylation reaction between N-bromoacetyltryptamine and reduced CoA, resulting in the production of a tight-binding bisubstrate analog inhibitor. This alkyltransferase activity is apparently catalyzed at a functionally distinct site compared with the acetyltransferase activity active site on serotonin N-acetyltransferase. Such active site plasticity is suggested to result from a subtle conformational alteration in the protein. This plasticity allows for an unusual form of mechanism-based inhibition with multiple turnovers, resulting in “molecular fratricide.” N-bromoacetyltryptamine should serve as a useful tool for dissecting the role of melatonin in circadian rhythm as well as a potential lead compound for therapeutic use in mood and sleep disorders.
Resumo:
The neurosteroid 3α-hydroxysteroid-5α-pregnan-20-one (allopregnanolone) acts as a positive allosteric modulator of γ-aminobutyric acid at γ-aminobutyric acid type A receptors and hence is a powerful anxiolytic, anticonvulsant, and anesthetic agent. Allopregnanolone is synthesized from progesterone by reduction to 5α-dihydroprogesterone, mediated by 5α-reductase, and by reduction to allopregnanolone, mediated by 3α-hydroxysteroid dehydrogenase (3α-HSD). Previous reports suggested that some selective serotonin reuptake inhibitors (SSRIs) could alter concentrations of allopregnanolone in human cerebral spinal fluid and in rat brain sections. We determined whether SSRIs directly altered the activities of either 5α-reductase or 3α-HSD, using an in vitro system containing purified recombinant proteins. Although rats appear to express a single 3α-HSD isoform, the human brain contains several isoforms of this enzyme, including a new isoform we cloned from human fetal brains. Our results indicate that the SSRIs fluoxetine, sertraline, and paroxetine decrease the Km of the conversion of 5α-dihydroprogesterone to allopregnanolone by human 3α-HSD type III 10- to 30-fold. Only sertraline inhibited the reverse oxidative reaction. SSRIs also affected conversions of androgens to 3α- and 3α, 17β-reduced or -oxidized androgens mediated by 3α-HSD type IIBrain. Another antidepressant, imipramine, was without any effect on allopregnanolone or androstanediol production. The region-specific expression of 3α-HSD type IIBrain and 3α-HSD type III mRNAs suggest that SSRIs will affect neurosteroid production in a region-specific manner. Our results may thus help explain the rapid alleviation of the anxiety and dysphoria associated with late luteal phase dysphoria disorder and major unipolar depression by these SSRIs.
Resumo:
Deamination of 5-methylcytosine residues in DNA gives rise to the G/T mismatched base pair. In humans this lesion is repaired by a mismatch-specific thymine DNA glycosylase (TDG or G/T glycosylase), which catalyzes specific excision of the thymine base through N-glycosidic bond hydrolysis. Unlike other DNA glycosylases, TDG recognizes an aberrant pairing of two normal bases rather than a damaged base per se. An important structural issue is thus to understand how the enzyme specifically targets the T (or U) residue of the mismatched base pair. Our approach toward the study of substrate recognition and processing by catalytic DNA binding proteins has been to modify the substrate so as to preserve recognition of the base but to prevent its excision. Here we report that replacement of 2′-hydrogen atoms with fluorine in the substrate 2′-deoxyguridine (dU) residue abrogates glycosidic bond cleavage, thereby leading to the formation of a tight, specific glycosylase–DNA complex. Biochemical characterization of these complexes reveals that the enzyme protects an ≈20-bp stretch of the substrate from DNase I cleavage, and directly contacts a G residue on the 3′ side of the mismatched U derivative. These studies provide a mechanistic rationale for the preferential repair of deaminated CpG sites and pave the way for future high-resolution studies of TDG bound to DNA.