994 resultados para Anatomical Therapeutic Chemical
Resumo:
Neolignans, generated by oxydative dimerization of propenylphenol and/or allylphenol, undergo further modifying steps. These biosynthetic reactions, confirmed in vitro, include Cope, retro-Claisen and Claisen rearrangements. Additionally acid catalysis effects convertions of bicyclo [3.2.1] octanoid neolignans into hydrobenzofuranoid neolignans, or inversely of hydrobenzofuranoid neolignans into bicyclo [3.2.1] octanoid neolignans, of hydrobenzofuranoid neolignans into futoenone type neolignans, of tetrahydrofuran neolignans into aryltetralin neolignans, as well as modifications by Friedel - Crafts reactions and the transformation of aryltetralin neolignans into arylindanones by pinacoline - pinacolone type rearrangement.
Resumo:
Cancer development is a long-term multistep process which allows interventional measure before the clincial disease emerges. the detection of natural substances which can block the process of carcinogenesis is a important as the identification of anti-tumoral drugs since they might be used in chemoprevention of cancer in high-risk groups. In vivo rodent models of chemical caecinogenesis have been used to study plant-derived inhibitors of carcinofenesis such as indols, coumarins, isothiocyanates, flavones, phenols and allyl-sulfides. Since the standard in vivo rodent bioassay is prolonged and expensive, shorter reliable protocols are needed. Two in vivo medium-term protocols for evaluation of modifiers of carcinogenesis are presented, one related to liver and the other to bladder cancer. Both protocols use rats, last 8 and 36 weeks and are based on the two-step concept of carcinogenesis: initiation and promotion. The protocols use respectively the development of altered foci of hepatocytes expressing immunochistochemically the placental form of gluthation S-transferase and the appearence of pre-neoplastic urothelium and papillomas as the "end-points". the use of these protocols for detection of plantpderived inhibitors of carcinogenesis appear warranted.
Resumo:
Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1). Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.
Resumo:
Lectins, carbohydrate-binding proteins of non-immune origin, that agglutinate cells or precipitate polysaccharides and glycoconjugates, are well distributed in nature, mainly in the Plant Kingdom. The great majority of the plante lectins are present in seed cotyledons where they are found in the cytoplasm or int he protein bodies, although they have also been found in roots, stems and leaves. Due to their peculiar properties, the lectins are used as a tool both for analytical and preparative purposes in biochemistry, cellular biology, immunology and related areas. In agriculture and medicine the use of lectins greatly improved in the last few years. The lextins, with few exceptions, are glycoproteins, need divalent cations to display full activity and are, in general, oligomers with variable molecular weight. Although the studies on lectins have completed a century, their role in nature is yet ynknown . Several hypotheses on their physiological functions have been suggested. Thus, lectins could play important roles in defense against pathogens, plant-microorganism symbiosis, cell organization, embryo morphogenesis, phagocytosis, cell wall elongation, pollen recognition and as reserve proteins. A brief review on the general properties and roles of the lectins is given.
Resumo:
Soil bacteria are heavily consumed by protozoan predators, and many bacteria have evolved defense strategies such as the production of toxic exometabolites. However, the production of toxins is energetically costly and therefore is likely to be adjusted according to the predation risk to balance the costs and benefits of predator defense. We investigated the response of the biocontrol bacterium Pseudomonas fluorescens CHA0 to a common predator, the free-living amoeba Acanthamoeba castellanii. We monitored the effect of the exposure to predator cues or direct contact with the predators on the expression of the phlA, prnA, hcnA, and pltA genes, which are involved in the synthesis of the toxins, 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin, hydrogen cyanide, and pyoluteorin, respectively. Predator chemical cues led to 2.2-, 2.0-, and 1.2-fold increases in prnA, phlA, and hcnA expression, respectively, and to a 25% increase in bacterial toxicity. The upregulation of the tested genes was related to the antiprotozoan toxicity of the corresponding toxins. Pyrrolnitrin and DAPG had the highest toxicity, suggesting that bacteria secrete a predator-specific toxin cocktail. The response of the bacteria was elicited by supernatants of amoeba cultures, indicating that water-soluble chemical compounds were responsible for induction of the bacterial defense response. In contrast, direct contact of bacteria with living amoebae reduced the expression of the four bacterial toxin genes by up to 50%, suggesting that protozoa can repress bacterial toxicity. The results indicate that predator-prey interactions are a determinant of toxin production by rhizosphere P. fluorescens and may have an impact on its biocontrol potential.
Resumo:
In 1995 the working group "Drug Monitoring" of the Swiss Society of Clinical Chemistry (SSCC) has already published a printed version of drug monographs, which are now newly compiled and presented in a standardised manner. The aim of these monographs is to give an overview on the most important informations that are necessary in order to request a drug analysis or is helpful to interpret the results. Therefore, the targeted audience are laboratory health professionals or the receivers of the reports. There is information provided on the indication for therapeutic drug monitoring, protein binding, metabolic pathways and enzymes involved, elimination half life time and elimination routes as well as information on therapeutic or toxic concentrations. Because preanalytical considerations are of particular importance for therapeutic drug monitoring, there is also information given at which time the determination of the drug concentration is reasonable and when steady-state concentrations are reached after changing the dose. Furthermore, the stability of the drug and its metabolite(s), respectively, after blood sampling is described. For readers with a specific interest, references to important publications are given. The number of the monographs will be continuously enlarged. The updated files are presented on the homepage of the SSCC (www.sscc.ch).
Resumo:
Due to the eye's specific anatomical and physiological conformation, the treatment of eye diseases is a real challenge for pharmaceutical therapy. The presence of efficient protective barriers (i.e., the conjunctival and corneal membranes) and protective mechanisms (i.e., blinking and nasolachrymal drainage) makes this organ particularly impervious to local drug therapy. To overcome these issues, numerous strategies have been envisioned using pharmaceutical technology. Many formulations currently on the market or still under development are emulsions or colloidal systems intended to enhance precorneal residence time and corneal penetration, causing a consequent increase in drug bioavailability after instillation. After a review of some recent developments in the field of cyclosporin A formulations for the eye, a novel micellar formulation of cyclosporine A based on a diblock methoxy-poly(ethylene glycol)-hexysubstituted poly(lactides) (MPEG-hexPLA) is described.
Resumo:
Most anticancer drugs are characterised by a steep dose-response relationship and narrow therapeutic window. Inter-individual pharmacokinetic (PK) variability is often substantial. The most relevant PK parameter for cytotoxic drugs is the area under the plasma concentration versus time curve (AUC). Thus it is somewhat surprising that therapeutic drug monitoring (TDM) is still uncommon for the majority of agents. Goals of the review were to assess the rationale for more widely used TDM of cytotoxics in oncology. There are several reasons why TDM has never been fully implemented into daily oncology practice. These include difficulties in establishing appropriate concentration target ranges, common use of combination chemotherapies for many tumour types, analytical challenges with prodrugs, intracellular compounds, the paucity of published data from pharmacological trials and 'Day1=Day21' administration schedules. There are some specific situations for which these limitations are overcome, including high dose methotrexate, 5-fluorouracil infusion, mitotane and some high dose chemotherapy regimens. TDM in paediatric oncology represents an important challenge. Established TDM approaches includes the widely used anticancer agents carboplatin, busulfan and methotrexate, with 13-cis-retinoic acid also recently of interest. Considerable effort should be made to better define concentration-effect relationships and to utilise tools such as population PK/PD models and comparative randomised trials of classic dosing versus pharmacokinetically guided adaptive dosing. There is an important heterogeneity among clinical practices and a strong need to promote TDM guidelines among the oncological community.
Resumo:
Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.
Resumo:
The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.
Resumo:
Summary: Lipophilicity plays an important role in the determination and the comprehension of the pharmacokinetic behavior of drugs. It is usually expressed by the partition coefficient (log P) in the n-octanol/water system. The use of an additional solvent system (1,2-dichlorethane/water) is necessary to obtain complementary information, as the log Poct values alone are not sufficient to explain ail biological properties. The aim of this thesis is to develop tools allowing to predict lipophilicity of new drugs and to analyze the information yielded by those log P values. Part I presents the development of theoretical models used to predict lipophilicity. Chapter 2 shows the necessity to extend the existing solvatochromic analyses in order to predict correctly the lipophilicity of new and complex neutral compounds. In Chapter 3, solvatochromic analyses are used to develop a model for the prediction of the lipophilicity of ions. A global model was obtained allowing to estimate the lipophilicity of neutral, anionic and cationic solutes. Part II presents the detailed study of two physicochemical filters. Chapter 4 shows that the Discovery RP Amide C16 stationary phase allows to estimate lipophilicity of the neutral form of basic and acidic solutes, except of lipophilic acidic solutes. Those solutes present additional interactions with this particular stationary phase. In Chapter 5, 4 different IANI stationary phases are investigated. For neutral solutes, linear data are obtained whatever the IANI column used. For the ionized solutes, their retention is due to a balance of electrostatic and hydrophobie interactions. Thus no discrimination is observed between different series of solutes bearing the same charge, from one column to an other. Part III presents two examples illustrating the information obtained thanks to Structure-Properties Relationships (SPR). Comparing graphically lipophilicity values obtained in two different solvent systems allows to reveal the presence of intramolecular effects .such as internai H-bond (Chapter 6). SPR is used to study the partitioning of ionizable groups encountered in Medicinal Chemistry (Chapter7). Résumé La lipophilie joue un .rôle important dans la détermination et la compréhension du comportement pharmacocinétique des médicaments. Elle est généralement exprimée par le coefficient de partage (log P) d'un composé dans le système de solvants n-octanol/eau. L'utilisation d'un deuxième système de solvants (1,2-dichloroéthane/eau) s'est avérée nécessaire afin d'obtenir des informations complémentaires, les valeurs de log Poct seules n'étant pas suffisantes pour expliquer toutes les propriétés biologiques. Le but de cette thèse est de développer des outils permettant de prédire la lipophilie de nouveaux candidats médicaments et d'analyser l'information fournie par les valeurs de log P. La Partie I présente le développement de modèles théoriques utilisés pour prédire la lipophilie. Le chapitre 2 montre la nécessité de mettre à jour les analyses solvatochromiques existantes mais inadaptées à la prédiction de la lipophilie de nouveaux composés neutres. Dans le chapitre 3, la même méthodologie des analyses solvatochromiques est utilisée pour développer un modèle permettant de prédire la lipophilie des ions. Le modèle global obtenu permet la prédiction de la lipophilie de composés neutres, anioniques et cationiques. La Partie II présente l'étude approfondie de deux filtres physicochimiques. Le Chapitre 4 montre que la phase stationnaire Discovery RP Amide C16 permet la détermination de la lipophilie de la forme neutre de composés basiques et acides, à l'exception des acides très lipophiles. Ces derniers présentent des interactions supplémentaires avec cette phase stationnaire. Dans le Chapitre 5, 4 phases stationnaires IAM sont étudiées. Pour les composés neutres étudiés, des valeurs de rétention linéaires sont obtenues, quelque que soit la colonne IAM utilisée. Pour les composés ionisables, leur rétention est due à une balance entre des interactions électrostatiques et hydrophobes. Donc aucune discrimination n'est observée entre les différentes séries de composés portant la même charge d'une colonne à l'autre. La Partie III présente deux exemples illustrant les informations obtenues par l'utilisation des relations structures-propriétés. Comparer graphiquement la lipophilie mesurée dans deux différents systèmes de solvants permet de mettre en évidence la présence d'effets intramoléculaires tels que les liaisons hydrogène intramoléculaires (Chapitre 6). Cette approche des relations structures-propriétés est aussi appliquée à l'étude du partage de fonctions ionisables rencontrées en Chimie Thérapeutique (Chapitre 7) Résumé large public Pour exercer son effet thérapeutique, un médicament doit atteindre son site d'action en quantité suffisante. La quantité effective de médicament atteignant le site d'action dépend du nombre d'interactions entre le médicament et de nombreux constituants de l'organisme comme, par exemple, les enzymes du métabolisme ou les membranes biologiques. Le passage du médicament à travers ces membranes, appelé perméation, est un paramètre important à optimiser pour développer des médicaments plus puissants. La lipophilie joue un rôle clé dans la compréhension de la perméation passive des médicaments. La lipophilie est généralement exprimée par le coefficient de partage (log P) dans le système de solvants (non miscibles) n-octanol/eau. Les valeurs de log Poct seules se sont avérées insuffisantes pour expliquer la perméation à travers toutes les différentes membranes biologiques du corps humain. L'utilisation d'un système de solvants additionnel (le système 1,2-dichloroéthane/eau) a permis d'obtenir les informations complémentaires indispensables à une bonne compréhension du processus de perméation. Un grand nombre d'outils expérimentaux et théoriques sont à disposition pour étudier la lipophilie. Ce travail de thèse se focalise principalement sur le développement ou l'amélioration de certains de ces outils pour permettre leur application à un champ plus large de composés. Voici une brève description de deux de ces outils: 1)La factorisation de la lipophilie en fonction de certaines propriétés structurelles (telle que le volume) propres aux composés permet de développer des modèles théoriques utilisables pour la prédiction de la lipophilie de nouveaux composés ou médicaments. Cette approche est appliquée à l'analyse de la lipophilie de composés neutres ainsi qu'à la lipophilie de composés chargés. 2)La chromatographie liquide à haute pression sur phase inverse (RP-HPLC) est une méthode couramment utilisée pour la détermination expérimentale des valeurs de log Poct.
Resumo:
Although an impressive array of efficacious antihypertensive agents are available to treat hypertension, the optimal use of these agents is limited by dose-related side-effect profiles. This is particularly the case for widely used first-line antihypertensive agents such as diuretics, beta-blockers, calcium antagonists, and alpha1-blockers; this represents a major therapeutic dilemma in treating hypertension. With the development of the angiotensin II receptor antagonists (AIIRAs), this dilemma might have been solved. Irbesartan is a long-acting AIIRA that provides dose-related efficacy with placebo-like tolerability at all clinical doses. The results of placebo and active-control trials of irbesartan have demonstrated that the agent is as effective as the leading members of major antihypertensive classes with respect to blood pressure control, while having superior tolerability. Pooled data from nine multicenter, randomized, placebo-controlled trials with irbesartan have documented no adverse events caused by dose-response. This feature could widen the traditionally narrow therapeutic window in the treatment of hypertension and point to the use of AIIRAs such as irbesartan as first-line therapy in the management of hypertension.
Resumo:
In a complete study in 25 patients with American cutaneous leishmaniasis, caused by Leishmania braziliensis complex, immunotherapeutic efficacy of parasite derived antigen (94-67 KD) has been compared to antimonial therapy. Additionally, to delineate the mechanism of therapeutic success, microscopical features of immune response in active lesions and healed or non-healed lesions following therapy were analyzed. The results showed that cure rates in immunotherapy and chemoterapy were equal (>83 por cento). The immunohistochemical changes in two therapeutic groups were also largely similar. The analysis of humoral and cellular immune response suggest that appropriate stimulation of T helper cells in the lesion site, in association with one or more cytokines, play a key role in the healing process.
Resumo:
Diagnostic and therapeutic aspects of human infection with Leishmania (Viannia) braziliensis found in the littoral forest of the state of Bahia are reviewed. There is pressing need for alternative cheap oral drug therapy.