991 resultados para Amount h-b CH4
Resumo:
The Indian Ocean earthquake of 26 December 2004 led to significant ground deformation in the Andaman and Nicobar region, accounting for ~800 km of the rupture. Part of this article deals with coseismic changes along these islands, observable from coastal morphology, biological indicators, and Global Positioning System (GPS) data. Our studies indicate that the islands south of 10° N latitude coseismically subsided by 1–1.5 m, both on their eastern and western margins, whereas those to the north showed a mixed response. The western margin of the Middle Andaman emerged by >1 m, and the eastern margin submerged by the same amount. In the North Andaman, both western and eastern margins emerged by >1 m. We also assess the pattern of long-term deformation (uplift/subsidence) and attempt to reconstruct earthquake/tsunami history, with the available data. Geological evidence for past submergence includes dead mangrove vegetation dating to 740 ± 100 yr B.P., near Port Blair and peat layers at 2–4 m and 10–15 m depths observed in core samples from nearby locations. Preliminary paleoseismological/tsunami evidence from the Andaman and Nicobar region and from the east coast of India, suggest at least one predecessor for the 2004 earthquake 900–1000 years ago. The history of earthquakes, although incomplete at this stage, seems to imply that the 2004-type earthquakes are infrequent and follow variable intervals
Resumo:
Regenerating codes are a class of distributed storage codes that allow for efficient repair of failed nodes, as compared to traditional erasure codes. An [n, k, d] regenerating code permits the data to be recovered by connecting to any k of the n nodes in the network, while requiring that a failed node be repaired by connecting to any d nodes. The amount of data downloaded for repair is typically much smaller than the size of the source data. Previous constructions of exact-regenerating codes have been confined to the case n = d + 1. In this paper, we present optimal, explicit constructions of (a) Minimum Bandwidth Regenerating (MBR) codes for all values of [n, k, d] and (b) Minimum Storage Regenerating (MSR) codes for all [n, k, d >= 2k - 2], using a new product-matrix framework. The product-matrix framework is also shown to significantly simplify system operation. To the best of our knowledge, these are the first constructions of exact-regenerating codes that allow the number n of nodes in the network, to be chosen independent of the other parameters. The paper also contains a simpler description, in the product-matrix framework, of a previously constructed MSR code with [n = d + 1, k, d >= 2k - 1].
Resumo:
The problem of finding optimal parameterized feedback policies for dynamic bandwidth allocation in communication networks is studied. We consider a queueing model with two queues to which traffic from different competing flows arrive. The queue length at the buffers is observed every T instants of time, on the basis of which a decision on the amount of bandwidth to be allocated to each buffer for the next T instants is made. We consider two different classes of multilevel closed-loop feedback policies for the system and use a two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm to find optimal policies within each prescribed class. We study the performance of the proposed algorithm on a numerical setting and show performance comparisons of the two optimal multilevel closedloop policies with optimal open loop policies. We observe that closed loop policies of Class B that tune parameters for both the queues and do not have the constraint that the entire bandwidth be used at each instant exhibit the best results overall as they offer greater flexibility in parameter tuning. Index Terms — Resource allocation, dynamic bandwidth allocation in communication networks, two-timescale SPSA algorithm, optimal parameterized policies. I.
Resumo:
The total synthesis of the enantiomer of the tetrahydrofuran containing natural product Jaspine B is reported. The key reactions in the synthesis include formation of the tetrahydrofuran unit by an acid mediated Williamson etherification and a subsequent elaboration with an olefin cross metathesis reaction. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.
Resumo:
Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.
Resumo:
A significant amount of research on the thermodynamic properties of molten alloys is undertaken for obtaining insights into their structure . The partial and integral molar enthalpies, entropies and volumes of mixing provide some general information on the nature and strength of atomic bonds and the distribution of atoms. However, until recently it has been difficult to derive specific quantitative information because the excess entropy of mixing contains configurational , vibrational , electronic , and sometimes magnetic contributions which cannot be easily separated.
Resumo:
Power conversion using high frequency (HF) link converters is popular because of compact size and light weight of highfrequency transformer. This study focuses on improved utilisation of HF transformer in DC–AC applications. In practical application, the operating condition of the power converter deviates significantly from the designed considerations. These deviating factors are commutation requirements (dead-time, overlap), mismatch in device drops and presence of the fundamental frequency in load current. As a result, the HF transformer handles some amount of low-frequency components (including DC) other than desired HF components. This causes the operating point in B-H curve to shift away from its normal or idealised position and hence results poor utilisation of the HF transformer and unwanted losses. This study investigates the nature of the problem with experimental determination of approximate lumped parameter modelling and saturation behaviour (B-H curve) of the HF transformer. A simple closed-loop control algorithm with online tuning of the controller parameters is proposed to improve the utilisation of the isolation transformer. The simulation and experimental results are presented.
Resumo:
The possible chemical reactions that take place during the growth of single crystal films of silicon on sapphire (SOS) are analyzed thermodynamically. The temperature for the growth of good quality epitaxial films is dependent on the extent of water vapor present in the carrier gas. The higher the water vapor content the higher the temperature needed to grow SOS films. Due to the interaction of silicon with sapphire at elevated temperatures, SOS films are doped with aluminum. The extent of doping is dependent on the conditions of film growth. The doping by aluminum from the substrate increases with increasing growth temperatures and decreasing growth rates. The equilibrium concentrations of aluminum at the silicon-sapphire interface are calculated as a function of deposition temperature, assuming that SiO2 or Al6Si2O13 are the products of reaction. It is most likely that the product could be a solid solutio n of Al2O3 in SiO2. The total amount of aluminum released due to the interaction between silicon and sapphire will account only for the formation of not more than one monolayer of reaction product unless the films are annealed long enough at elevated temperatures. This value is in good agreement with the recently reported observations employing high resolution transmission electron microscopy.
Resumo:
Large single crystal of triglycine sulphate (dimension 100 mm along monoclinic b-axis and 15 mm in diameter) was grown using the unidirectional solution growth technique. The X-ray diffraction studies confirmed the growth/long axis to be b-axis (polar axis). The dielectric studies were carried out at various temperatures to establish the phase transition temperature. The frequency response of the dielectric constant, dielectric loss and impedance of the crystal along the growth axis, was monitored. These are typically characterized by strong resonance peaks in the kHz region. The piezoelectric coefficients like stiffness constant (C), elastic coefficient (S), electromechanical coupling coefficient (k) and d (31) were calculated using the resonance-antiresonance method. Polarization (P)-Electric field (E) hysteresis loops were recorded at various temperatures to find the temperature-dependent spontaneous polarization of the grown crystal. The pyroelectric coefficients were determined from the pyroelectric current measurement by the Byer and Roundy method. The ferroelectric domain patterns were recorded on (010) plane using scanning electron microscopy and optical microscopy.
Resumo:
The most important objective of the present study was to explain why cationic lipid (CL)-mediated delivery of plasmid DNA (pDNA) is better than that of linear DNA in gene therapy, a question that, until now, has remained unanswered. Herein for the first time we experimentally show that for different types of CLs, pDNA, in contrast to linear DNA, is compacted with a large amount of its counterions, yielding a lower effective negative charge. This feature has been confirmed through a number of physicochemical and biochemical investigations. This is significant for both in vitro and in vivo transfection studies. For an effective DNA transfection, the lower the amount of the CL, the lower is the cytotoxicity. The study also points out that it is absolutely necessary to consider both effective charge ratios between CL and pDNA and effective pDNA charges, which can be determined from physicochemical experiments.
Resumo:
A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart from helping overcome the effects of fading, MIMO systems can also be shown to provide a manyfold increase in the amount of information that can be transmitted from transmitter to receiver. Not surprisingly,MIMO has played, and continues to play, a key role in the advancement of wireless communication.Space-time codes are a reference to a signalling format in which information about the message is dispersed across both the spatial (or antenna) and time dimension. Algebraic techniques drawing from algebraic structures such as rings, fields and algebras, have been extensively employed in the construction of optimal space-time codes that enable the potential of MIMO communication to be realized, some of which have found their way into the IEEE wireless communication standards. In this tutorial article, reflecting the authors’interests in this area, we survey some of these techniques.
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Resumo:
In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.