944 resultados para Ambient Air Pollution, China, Climate Change, Health Impact


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Maatalous pohjoisilla äärialueilla: ilmastolliset rajoitukset ja ilmaston muutosten vaikutukset viljelyyn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Ilmastonmuutoksen taloudelliset vaikutukset suomalaiseen maatalouteen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative estimates of the range loss of mountain plants under climate change have so far mostly relied on static geographical projections of species' habitat shifts(1-3). Here, we use a hybrid model(4) that combines such projections with simulations of demography and seed dispersal to forecast the climate-driven spatio-temporal dynamics of 150 high-mountain plant species across the European Alps. This model predicts average range size reductions of 44-50% by the end of the twenty-first century, which is similar to projections from the most 'optimistic' static model (49%). However, the hybrid model also indicates that population dynamics will lag behind climatic trends and that an average of 40% of the range still occupied at the end of the twenty-first century will have become climatically unsuitable for the respective species, creating an extinction debt(5,6). Alarmingly, species endemic to the Alps seem to face the highest range losses. These results caution against optimistic conclusions from moderate range size reductions observed during the twenty-first century as they are likely to belie more severe longer-term effects of climate warming on mountain plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, perhaps without their realization, Iowans are factoring climate change into their lives and activities. Current farming practices and flood mitigation efforts, for example, are reflecting warmer winters, longer growing seasons, warmer nights, higher dew-point temperatures, increased humidity, greater annual stream flows, and more frequent severe precipitation events (Fig. 1) than were prevalent during the past 50 years. Some of the effects of these changes (such as longer growing season) may be positive, while others (particularly the tendency for greater precipitation events that lead to flooding) are negative. Climate change embodies all of these results and many more in a complex manner. The Iowa legislature has been proactive in seeking advice about climate change and its impacts on our state. In 2007, Governor Culver and the Iowa General Assembly enacted Senate File 485 and House File 2571 to create the Iowa Climate Change Advisory Council (ICCAC). ICCAC members reported an emissions inventory and a forecast for Iowa’s greenhouse gases (GHGs), policy options for reducing Iowa’s GHG, and two scenarios charting GHG reductions of 50% and 90% by 2050 from a baseline of 2005. Following issuance of the final report in December 2008, the General Assembly enacted a new bill in 2009 (Sec. 27, Section 473.7, Code 2009 amended) that set in motion a review of climate change impacts and policies in Iowa. This report is the result of that 2009 bill. It continues the dialogue between Iowa’s stakeholders, scientific community, and the state legislature that was begun with these earlier reports.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[spa] En lo que concierne al cambio climático, los pronósticos de cercanos picos de combustible fósiles parecen buenas noticias pues la mayoría de las emisiones proceden de la quema de combustibles fósiles. Sin embargo, esto podría resultar engañoso de confirmarse las enormes estimaciones de reservas de carbón pues puede divisarse un intercambio de combustible fósiles con baja concentración de carbono (petróleo y gas) por otros de mayor (carbón). Ciñéndonos a esta hipótesis desarrollamos escenarios donde tan pronto el petróleo y el gas natural alcanzan su cénit la extracción de carbón crece lo necesario para compensar el descenso de los primeros. Estimamos las emisiones que se deriva de tales supuestos y las comparamos con el peor escenario del IPCC. Si bien dicho escenario parece improbable concluimos que los picos de petróleo y gas no son suficientes para evitar peligrosas sendas de gases de efecto invernadero. Las concentraciones de CO2 halladas superan con creces las 450 ppm sin signos de remisión.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have investigated the impacts that climate change could potentially have on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have been using the simplification of considering dispersal as either unlimited or null. However, depending on a species' dispersal capacity, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of a species' future distribution. To quantify the discrepancies between unlimited, realistic, and no dispersal scenarios, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the Western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal and realistic dispersal with long-distance dispersal events) and under four climate change scenarios. Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, using the unlimited dispersal simplification nevertheless provided good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analyzing the temporal pattern of species extinctions over the entire 21st century showed that, due to the possibility of a large number of species shifting their distribution to higher elevation, important species extinctions for our study area might not occur before the 2080-2100 time periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Kevätvehnän ja nurminadan fotosynteesi ja Rubisco-kinetiikka simuloidun ilmastonmuutoksen eli kohotetun hiilidioksidipitoisuuden ja kohotetun lämpötilan oloissa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and averagelatitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northerndistributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the contribution of sources and establishment characteristics, on the exposure to fine particulate matter (PM(2.5)) in the non-smoking sections of bars, cafes, and restaurants in central Zurich. PM(2.5)-exposure was determined with a nephelometer. A random sample of hospitality establishments was investigated on all weekdays, from morning until midnight. Each visit lasted 30 min. Numbers of smokers and other sources, such as candles and cooking processes, were recorded, as were seats, open windows, and open doors. Ambient air pollution data were obtained from public authorities. Data were analysed using robust MM regression. Over 14 warm, sunny days, 102 establishments were measured. Average establishment PM(2.5) concentrations were 64.7 microg/m(3) (s.d. = 73.2 microg/m(3), 30-min maximum 452.2 microg/m(3)). PM(2.5) was significantly associated with the number of smokers, percentage of seats occupied by smokers, and outdoor PM. Each smoker increased PM(2.5) on average by 15 microg/m(3). No associations were found with other sources, open doors or open windows. Bars had more smoking guests and showed significantly higher concentrations than restaurants and cafes. Smokers were the most important PM(2.5)-source in hospitality establishments, while outdoor PM defined the baseline. Concentrations are expected to be even higher during colder, unpleasant times of the year. PRACTICAL IMPLICATIONS: Smokers and ambient air pollution are the most important sources of fine airborne particulate matter (PM(2.5)) in the non-smoking sections of bars, restaurants, and cafes. Other sources do not significantly contribute to PM(2.5)-levels, while opening doors and windows is not an efficient means of removing pollutants. First, this demonstrates the impact that even a few smokers can have in affecting particle levels. Second, it implies that creating non-smoking sections, and using natural ventilation, is not sufficient to bring PM(2.5) to levels that imply no harm for employees and non-smoking clients. [Authors]