952 resultados para All-optical networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

I, H¿ and [SII] CCD images of the regions around 4 young IRAS sources embedded in the dense molecular cloud cores CB 6, CB 39, AFGL 5142, and L 1251 are presented. Reflection nebulosities are found in all 4 regions. Herbig-Haro objects are detected in AFGL 5142 and L 1251. In both cases, the HH objects are new discoveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of different kinds of nonlinear filtering in a joint transform correlator are studied and compared. The study is divided into two parts, one corresponding to object space and the second to the Fourier domain of the joint power spectrum. In the first part, phase and inverse filters are computed; their inverse Fourier transforms are also computed, thereby becoming the reference in the object space. In the Fourier space, the binarization of the power spectrum is realized and compared with a new procedure for removing the spatial envelope. All cases are simulated and experimentally implemented by a compact joint transform correlator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a procedure for the optical characterization of thin-film stacks from spectrophotometric data. The procedure overcomes the intrinsic limitations arising in the numerical determination of manyparameters from reflectance or transmittance spectra measurements. The key point is to use all theinformation available from the manufacturing process in a single global optimization process. The method is illustrated by a case study of solgel applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose This paper aims to analyse various aspects of an academic social network: the profile of users, the reasons for its use, its perceived benefits and the use of other social media for scholarly purposes. Design/methodology/approach The authors examined the profiles of the users of an academic social network. The users were affiliated with 12 universities. The following were recorded for each user: sex, the number of documents uploaded, the number of followers, and the number of people being followed. In addition, a survey was sent to the individuals who had an email address in their profile. Findings Half of the users of the social network were academics and a third were PhD students. Social sciences scholars accounted for nearly half of all users. Academics used the service to get in touch with other scholars, disseminate research results and follow other scholars. Other widely employed social media included citation indexes, document creation, edition and sharing tools and communication tools. Users complained about the lack of support for the utilisation of these tools. Research limitations/implications The results are based on a single case study. Originality/value This study provides new insights on the impact of social media in academic contexts by analysing the user profiles and benefits of a social network service that is specifically targeted at the academic community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the reproducibility of Cirrus-SD OCT measurements and to compare central macular thickness (CMT) measurements between TD-Stratus and SD-Cirrus OCT in patients with active exudative AMD. Methods: Consecutive case series of patients with active exudative AMD seen in the Medical Retina Department. Patients underwent 1 scan with Stratus (macular thickness map protocol) and 5 scans with Cirrus (Macular Cube protocol) at the same visit by the same experienced examiner. To be included, patients best-corrected visual acuity (BCVA) had to be >20/200 while all scans had to be of sufficient quality, well-centered and at least one Cirrus scan with CMT >300 microns. The repeatability of the SD Cirrus was estimated by using all 5 CMT measurements and the mean of the Cirrus measurements was compared with the CMT obtained by TD Stratus. Results: Cirrus OCT demonstrated high intraobserver repeatability at the central foveal region (ICC 96%). The mean of the CMT measurements was 321microns for Stratus and 387 microns for Cirrus. The average difference was 65m (SD=30). The coefficient of concordance between Stratus and Cirrus CMT measurements was rho=0,749 with a high precision and a moderate accuracy. The equation of the line of regression between Stratus and meanCirrus is given by the following: M_stratus = 0,848 x m_cirrus - 4,496 (1).Conclusions: The Cirrus macular cube protocol allows reproducible CMT measurements in patients with active exudative AMD. In cases of upgrading from TD to SD use and vice versa, there is the possibility to predict the measurements by using the equation (1). These real life data and conclusions can help in improving our clinical management of patients with neovascular AMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To report the time course of retinal morphologic changes in a patient with acute retinal pigment epithelitis (ARPE) using spectral domain optical coherence tomography (SD-OCT). METHODS: A 30-year old man was referred for blurred vision of his right eye after five days that appeared suddenly 15 days after recovery from a flu-like syndrome. SD-OCT was performed immediately, followed by fluorescein and infracyanine angiography at eight days and then at three weeks. RESULTS: At presentation, a bubble of sub-macular deposit was observed on the right macula with central golden micronodules in a honeycomb pattern. SD-OCT showed an "anterior dislocation" of all the retinal layers up to the inner/outer segment (IS/OS) line and irregular deposits at the OS level together with thickening of the retinal pigment epithelial (RPE) layer. As visual acuity increased, eight days later, the OCT showed reduction of the sub-retinal deposits and an abnormal hyperflectivity of the sub-retinal and RPE layers was observed. The patient showed a positive serology for picornavirus. DISCUSSION: The acute SD-OCT sections of this patient with ARPE were compared with histological sections of a 35 day old Royal College of Surgeons rat. Similar findings could be observed, with preservation of the IS/OS line and accumulation of debris at the OS level, suggesting that ARPE symptoms could result from a transient phagocytic dysfunction of the RPE at the fovea, inducing reversible accumulation of undigested OS. Picornaviruses comprising enterovirus and coxsachievirus described as being associated with acute chorioretinitis. In this case, it was responsible for ARPE. CONCLUSION: We hypothesize that ARPE syndrome results from a transient dysfunction of RPE, which can occur as a post viral reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.