815 resultados para Alcohol Treatment, Machine Learning, Bayesian, Decision Tree


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematological cancers are a heterogeneous family of diseases that can be divided into leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot be surgically removable, chemotherapy represents the mainstay of their treatment. However, it still faces several challenges like drug resistance and low response rate, and the need for new anticancer agents is compelling. The drug discovery process is long-term, costly, and prone to high failure rates. With the rapid expansion of biological and chemical "big data", some computational techniques such as machine learning tools have been increasingly employed to speed up and economize the whole process. Machine learning algorithms can create complex models with the aim to determine the biological activity of compounds against several targets, based on their chemical properties. These models are defined as multi-target Quantitative Structure-Activity Relationship (mt-QSAR) and can be used to virtually screen small and large chemical libraries for the identification of new molecules with anticancer activity. The aim of my Ph.D. project was to employ machine learning techniques to build an mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously active against 43 hematological cancer cell lines. For this purpose, first, I constructed a large and diversified dataset of molecules extracted from the ChEMBL database. Then, I compared the performance of different ML classification algorithms, until Random Forest was identified as the one returning the best predictions. Finally, I used different approaches to maximize the performance of the model, which achieved an accuracy of 88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a validation set. This model was further applied to the virtual screening of a small dataset of molecules tested in our laboratory, where it showed 100% accuracy in correctly classifying all molecules. This result is confirmed by our previous in vitro experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Intelligence (AI) and Machine Learning (ML) are novel data analysis techniques providing very accurate prediction results. They are widely adopted in a variety of industries to improve efficiency and decision-making, but they are also being used to develop intelligent systems. Their success grounds upon complex mathematical models, whose decisions and rationale are usually difficult to comprehend for human users to the point of being dubbed as black-boxes. This is particularly relevant in sensitive and highly regulated domains. To mitigate and possibly solve this issue, the Explainable AI (XAI) field became prominent in recent years. XAI consists of models and techniques to enable understanding of the intricated patterns discovered by black-box models. In this thesis, we consider model-agnostic XAI techniques, which can be applied to Tabular data, with a particular focus on the Credit Scoring domain. Special attention is dedicated to the LIME framework, for which we propose several modifications to the vanilla algorithm, in particular: a pair of complementary Stability Indices that accurately measure LIME stability, and the OptiLIME policy which helps the practitioner finding the proper balance among explanations' stability and reliability. We subsequently put forward GLEAMS a model-agnostic surrogate interpretable model which requires to be trained only once, while providing both Local and Global explanations of the black-box model. GLEAMS produces feature attributions and what-if scenarios, from both dataset and model perspective. Eventually, we argue that synthetic data are an emerging trend in AI, being more and more used to train complex models instead of original data. To be able to explain the outcomes of such models, we must guarantee that synthetic data are reliable enough to be able to translate their explanations to real-world individuals. To this end we propose DAISYnt, a suite of tests to measure synthetic tabular data quality and privacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even without formal guarantees of their effectiveness, adversarial attacks against Machine Learning models frequently fool new defenses. We identify six key asymmetries that contribute to this phenomenon and formulate four guidelines to build future-proof defenses by preventing such asymmetries. We also prove that attacking a classifier is NP-complete, while defending from such attacks is Sigma_2^P-complete. We then introduce Counter-Attack (CA), an asymmetry-free metadefense that determines whether a model is robust on a given input by estimating its distance from the decision boundary. Under specific assumptions CA can provide theoretical detection guarantees. Additionally, we prove that while CA is NP-complete, fooling CA is Sigma_2^P-complete. Even when using heuristic relaxations, we show that our method can reliably identify non-robust points. As part of our experimental evaluation, we introduce UG100, a new dataset obtained by applying a provably optimal attack to six limited-scale networks (three for MNIST and three for CIFAR10), each trained in three different manners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il ruolo dell’informatica è diventato chiave del funzionamento del mondo moderno, ormai sempre più in progressiva digitalizzazione di ogni singolo aspetto della vita dell’individuo. Con l’aumentare della complessità e delle dimensioni dei programmi, il rilevamento di errori diventa sempre di più un’attività difficile e che necessita l’impiego di tempo e risorse. Meccanismi di analisi del codice sorgente tradizionali sono esistiti fin dalla nascita dell’informatica stessa e il loro ruolo all’interno della catena produttiva di un team di programmatori non è mai stato cosi fondamentale come lo è tuttora. Questi meccanismi di analisi, però, non sono esenti da problematiche: il tempo di esecuzione su progetti di grandi dimensioni e la percentuale di falsi positivi possono, infatti, diventare un importante problema. Per questi motivi, meccanismi fondati su Machine Learning, e più in particolare Deep Learning, sono stati sviluppati negli ultimi anni. Questo lavoro di tesi si pone l’obbiettivo di esplorare e sviluppare un modello di Deep Learning per il riconoscimento di errori in un qualsiasi file sorgente scritto in linguaggio C e C++.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le recenti analisi dei dati raccolti ad ALICE dimostrano che la nostra comprensione dei fenomeni di adronizzazione dei sapori pesanti è ancora incompleta, perché le misure effettuate su collisioni pp, p-Pb e Pb-Pb non sono riproducibili da modelli teorici basati su altre tipologie di collisione come e+e−. In particolare, i risultati sembrano indicare che il principio di universalità, che assume che le funzioni di frammentazione di quark e gluoni siano indipendenti dal tipo di sistema interagente, non sia valido. Per questo motivo sono stati sviluppati nuovi modelli teorici e fenomenologici, capaci di riprodurre in modo più o meno accurato i dati sperimentali. Questi modelli differiscono tra di loro soprattutto a bassi valori di impulso trasverso pT . L’analisi dati a basso pT si rivela dunque di fondamentale importanza, in quanto permette di discriminare, tra i vari modelli, quelli che sono realmente in grado di riprodurre i dati sperimentali e quelli che non lo sono. Inoltre può fornire una conferma sperimentale dei fenomeni fisici su cui tale modello si basa. In questa tesi è stato estratto il numero di barioni Λ+c (yield ) prodotto in collisioni pp a √s = 13 TeV , nel range di impulso trasverso 0 < pT (Λ+c ) < 1 GeV/c. É stato fatto uso di una tecnica di machine learning che sfrutta un algoritmo di tipo Boosted Decision Trees (BDT) implementato dal pacchetto TMVA, al fine di identificare ed eliminare una grossa parte del fondo statistico e semplificare notevolmente l’analisi vera e propria. Il grado di attendibilità della misura è stata verificata eseguendo l’estrazione dello yield con due approcci diversi: il primo, modellando il fondo combinatoriale con una funzione analitica; successivamente con la creazione di un template statistico creato ad hoc con la tecnica delle track rotations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il mondo della moda è in continua e costante evoluzione, non solo dal punto di vista sociale, ma anche da quello tecnologico. Nel corso del presente elaborato si è studiata la possibilità di riconoscere e segmentare abiti presenti in una immagine utilizzando reti neurali profonde e approcci moderni. Sono state, quindi, analizzate reti quali FasterRCNN, MaskRCNN, YOLOv5, FashionPedia e Match-RCNN. In seguito si è approfondito l’addestramento delle reti neurali profonde in scenari di alta parallelizzazione e su macchine dotate di molteplici GPU al fine di ridurre i tempi di addestramento. Inoltre si è sperimentata la possibilità di creare una rete per prevedere se un determinato abito possa avere successo in futuro analizzando semplicemente dati passati e una immagine del vestito in questione. Necessaria per tali compiti è stata, inoltre, una approfondita analisi dei dataset esistenti nel mondo della moda e dei metodi per utilizzarli per l’addestramento. Il presente elaborato è stato svolto nell’ambito del progetto FA.RE.TRA. per il quale l'Università di Bologna svolge un compito di consulenza per lo studio di fattibilità su reti neurali in grado di svolgere i compiti menzionati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno degli obiettivi più ambizioni e interessanti dell'informatica, specialmente nel campo dell'intelligenza artificiale, consiste nel raggiungere la capacità di far ragionare un computer in modo simile a come farebbe un essere umano. I più recenti successi nell'ambito delle reti neurali profonde, specialmente nel campo dell'elaborazione del testo in linguaggio naturale, hanno incentivato lo studio di nuove tecniche per affrontare tale problema, a cominciare dal ragionamento deduttivo, la forma più semplice e lineare di ragionamento logico. La domanda fondamentale alla base di questa tesi è infatti la seguente: in che modo una rete neurale basata sull'architettura Transformer può essere impiegata per avanzare lo stato dell'arte nell'ambito del ragionamento deduttivo in linguaggio naturale? Nella prima parte di questo lavoro presento uno studio approfondito di alcune tecnologie recenti che hanno affrontato questo problema con intuizioni vincenti. Da questa analisi emerge come particolarmente efficace l'integrazione delle reti neurali con tecniche simboliche più tradizionali. Nella seconda parte propongo un focus sull'architettura ProofWriter, che ha il pregio di essere relativamente semplice e intuitiva pur presentando prestazioni in linea con quelle dei concorrenti. Questo approfondimento mette in luce la capacità dei modelli T5, con il supporto del framework HuggingFace, di produrre più risposte alternative, tra cui è poi possibile cercare esternamente quella corretta. Nella terza e ultima parte fornisco un prototipo che mostra come si può impiegare tale tecnica per arricchire i sistemi tipo ProofWriter con approcci simbolici basati su nozioni linguistiche, conoscenze specifiche sul dominio applicativo o semplice buonsenso. Ciò che ne risulta è un significativo miglioramento dell'accuratezza rispetto al ProofWriter originale, ma soprattutto la dimostrazione che è possibile sfruttare tale capacità dei modelli T5 per migliorarne le prestazioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il quark top è una delle particelle fondamentali del Modello Standard, ed è osservato a LHC nelle collisioni a più elevata energia. In particolare, la coppia top-antitop (tt̄) è prodotta tramite interazione forte da eventi gluone-gluone (gg) oppure collisioni di quark e antiquark (qq̄). I diversi meccanismi di produzione portano ad avere coppie con proprietà diverse: un esempio è lo stato di spin di tt̄, che vicino alla soglia di produzione è maggiormente correlato nel caso di un evento gg. Uno studio che voglia misurare l’entità di tali correlazioni risulta quindi essere significativamente facilitato da un metodo di discriminazione delle coppie risultanti sulla base del loro canale di produzione. Il lavoro qui presentato ha quindi lo scopo di ottenere uno strumento per effettuare tale differenziazione, attraverso l’uso di tecniche di analisi multivariata. Tali metodi sono spesso applicati per separare un segnale da un fondo che ostacola l’analisi, in questo caso rispettivamente gli eventi gg e qq̄. Si dice che si ha a che fare con un problema di classificazione. Si è quindi studiata la prestazione di diversi algoritmi di analisi, prendendo in esame le distribuzioni di numerose variabili associate al processo di produzione di coppie tt̄. Si è poi selezionato il migliore in base all’efficienza di riconoscimento degli eventi di segnale e alla reiezione degli eventi di fondo. Per questo elaborato l’algoritmo più performante è il Boosted Decision Trees, che permette di ottenere da un campione con purezza iniziale 0.81 una purezza finale di 0.92, al costo di un’efficienza ridotta a 0.74.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le interfacce cervello-macchina (BMIs) permettono di guidare devices esterni utilizzando segnali neurali. Le BMIs rappresentano un’importante tecnologia per tentare di ripristinare funzioni perse in patologie che interrompono il canale di comunicazione tra cervello e corpo, come malattie neurodegenerative o lesioni spinali. Di importanza chiave per il corretto funzionamento di una BCI è la decodifica dei segnali neurali per trasformarli in segnali idonei per guidare devices esterni. Negli anni sono stati implementati diversi tipi di algoritmi. Tra questi gli algoritmi di machine learning imparano a riconoscere i pattern neurali di attivazione mappando con grande efficienza l’input, possibilmente l’attività dei neuroni, con l’output, ad esempio i comandi motori per guidare una possibile protesi. Tra gli algoritmi di machine learning ci si è focalizzati sulle deep neural networks (DNN). Un problema delle DNN è l’elevato tempo di training. Questo infatti prevede il calcolo dei parametri ottimali della rete per minimizzare l’errore di predizione. Per ridurre questo problema si possono utilizzare le reti neurali convolutive (CNN), reti caratterizzate da minori parametri di addestramento rispetto ad altri tipi di DNN con maggiori parametri come le reti neurali ricorrenti (RNN). In questo elaborato è esposto uno studio esplorante l’utilizzo innovativo di CNN per la decodifica dell’attività di neuroni registrati da macaco sveglio mentre svolgeva compiti motori. La CNN risultante ha consentito di ottenere risultati comparabili allo stato dell’arte con un minor numero di parametri addestrabili. Questa caratteristica in futuro potrebbe essere chiave per l’utilizzo di questo tipo di reti all’interno di BMIs grazie ai tempi di calcolo ridotti, consentendo in tempo reale la traduzione di un segnale neurale in segnali per muovere neuroprotesi.