897 resultados para Agreement error
Resumo:
This contribution is concerned with aposteriori error analysis of discontinuous Galerkin (dG) schemes approximating hyperbolic conservation laws. In the scalar case the aposteriori analysis is based on the L1 contraction property and the doubling of variables technique. In the system case the appropriate stability framework is in L2, based on relative entropies. It is only applicable if one of the solutions, which are compared to each other, is Lipschitz. For dG schemes approximating hyperbolic conservation laws neither the entropy solution nor the numerical solution need to be Lipschitz. We explain how this obstacle can be overcome using a reconstruction approach which leads to an aposteriori error estimate.
Resumo:
To improve the quantity and impact of observations used in data assimilation it is necessary to take into account the full, potentially correlated, observation error statistics. A number of methods for estimating correlated observation errors exist, but a popular method is a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. The accuracy of the results it yields is unknown as the diagnostic is sensitive to the difference between the exact background and exact observation error covariances and those that are chosen for use within the assimilation. It has often been stated in the literature that the results using this diagnostic are only valid when the background and observation error correlation length scales are well separated. Here we develop new theory relating to the diagnostic. For observations on a 1D periodic domain we are able to the show the effect of changes in the assumed error statistics used in the assimilation on the estimated observation error covariance matrix. We also provide bounds for the estimated observation error variance and eigenvalues of the estimated observation error correlation matrix. We demonstrate that it is still possible to obtain useful results from the diagnostic when the background and observation error length scales are similar. In general, our results suggest that when correlated observation errors are treated as uncorrelated in the assimilation, the diagnostic will underestimate the correlation length scale. We support our theoretical results with simple illustrative examples. These results have potential use for interpreting the derived covariances estimated using an operational system.
Resumo:
Recent empirical works on the within-sector impact of inward investments on domestic firms’ productivity have found rather robust evidence of no (or even negative) effects. We suggest that, among other reasons, a specification error might explain some of these results. A more general specification, which includes the usual one as a special case, is proposed. Using data on Italian manufacturing firms in 1992–2000, we find positive externalities only once we allow for the more flexible specification.
Resumo:
We present and analyse a space–time discontinuous Galerkin method for wave propagation problems. The special feature of the scheme is that it is a Trefftz method, namely that trial and test functions are solution of the partial differential equation to be discretised in each element of the (space–time) mesh. The method considered is a modification of the discontinuous Galerkin schemes of Kretzschmar et al. (2014) and of Monk & Richter (2005). For Maxwell’s equations in one space dimension, we prove stability of the method, quasi-optimality, best approximation estimates for polynomial Trefftz spaces and (fully explicit) error bounds with high order in the meshwidth and in the polynomial degree. The analysis framework also applies to scalar wave problems and Maxwell’s equations in higher space dimensions. Some numerical experiments demonstrate the theoretical results proved and the faster convergence compared to the non-Trefftz version of the scheme.
Resumo:
Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.
Resumo:
This study evaluates the differing claims of the Aspect Hypothesis (Anderson & Shirai 1996) and the Sentential Aspect Hypothesis (Sharma & Deo 2009) for perfective marking by L1 English learners of Mandarin. The AH predicts a narrow focus on inherent lexical aspect (the verb and predicate) in determining the use of the perfective marker le, whilst the SAH suggests that – subject to L1 influence – perfective marking agrees with the final derived aspectual class of the sentence. To test these claims data were collected using a controlled le-insertion task, combined with oral corpus data. The results show that learners’ perfective marking patterns with the sentential aspectual class and not inherent lexical aspect (where these differ), and that overall the sentential aspectual class better predicts learners’ assignment of perfective marking than lexical aspect.
Resumo:
A smoother introduced earlier by van Leeuwen and Evensen is applied to a problem in which real obser vations are used in an area with strongly nonlinear dynamics. The derivation is new , but it resembles an earlier derivation by van Leeuwen and Evensen. Again a Bayesian view is taken in which the prior probability density of the model and the probability density of the obser vations are combined to for m a posterior density . The mean and the covariance of this density give the variance-minimizing model evolution and its errors. The assumption is made that the prior probability density is a Gaussian, leading to a linear update equation. Critical evaluation shows when the assumption is justified. This also sheds light on why Kalman filters, in which the same ap- proximation is made, work for nonlinear models. By reference to the derivation, the impact of model and obser vational biases on the equations is discussed, and it is shown that Bayes’ s for mulation can still be used. A practical advantage of the ensemble smoother is that no adjoint equations have to be integrated and that error estimates are easily obtained. The present application shows that for process studies a smoother will give superior results compared to a filter , not only owing to the smooth transitions at obser vation points, but also because the origin of features can be followed back in time. Also its preference over a strong-constraint method is highlighted. Further more, it is argued that the proposed smoother is more efficient than gradient descent methods or than the representer method when error estimates are taken into account
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
In recent years an increasing number of papers have employed meta-analysis to integrate effect sizes of researchers’ own series of studies within a single paper (“internal meta-analysis”). Although this approach has the obvious advantage of obtaining narrower confidence intervals, we show that it could inadvertently inflate false-positive rates if researchers are motivated to use internal meta-analysis in order to obtain a significant overall effect. Specifically, if one decides whether to stop or continue a further replication experiment depending on the significance of the results in an internal meta-analysis, false-positive rates would increase beyond the nominal level. We conducted a set of Monte-Carlo simulations to demonstrate our argument, and provided a literature review to gauge awareness and prevalence of this issue. Furthermore, we made several recommendations when using internal meta-analysis to make a judgment on statistical significance.
Resumo:
The present study examines the processing of subject-verb (SV) number agreement with coordinate subjects in pre-verbal and post-verbal positions in Greek. Greek is a language with morphological number marked on nominal and verbal elements. Coordinate SV agreement, however, is special in Greek as it is sensitive to the coordinate subject's position: when pre-verbal, the verb is marked for plural while when post-verbal the verb can be in the singular. We conducted two experiments, an acceptability judgment task with adult monolinguals as a pre-study (Experiment 1) and a self-paced reading task as the main study (Experiment 2) in order to obtain acceptance as well as processing data. Forty adult monolingual speakers of Greek participated in Experiment 1 and a hundred and forty one in Experiment 2. Seventy one children participated in Experiment 2: 30 Albanian-Greek sequential bilingual children and 41 Greek monolingual children aged 10–12 years. The adult data in Experiment 1 establish the difference in acceptability between singular VPs in SV and VS constructions reaffirming our hypothesis. Meanwhile, the adult data in Experiment 2 show that plural verbs accelerate processing regardless of subject position. The child online data show that sequential bilingual children have longer reading times (RTs) compared to the age-matched monolingual control group. However, both child groups follow a similar processing pattern in both pre-verbal and post-verbal constructions showing longer RTs immediately after a singular verb when the subject was pre-verbal indicating a grammaticality effect. In the post-verbal coordinate subject sentences, both child groups showed longer RTs on the first subject following the plural verb due to the temporary number mismatch between the verb and the first subject. This effect was resolved in monolingual children but was still present at the end of the sentence for bilingual children indicating difficulties to reanalyze and integrate information. Taken together, these findings demonstrate that (a) 10–12 year-old sequential bilingual children are sensitive to number agreement in SV coordinate constructions parsing sentences in the same way as monolingual children even though their vocabulary abilities are lower than that of age-matched monolingual peers and (b) bilinguals are slower in processing overall.
Resumo:
Previous research with children learning a second language (L2) has reported errors with verb inflection and cross-linguistic variation in accuracy and error patterns. However, owing to the cross-linguistic complexity and diversity of different verbal paradigms, the cross-linguistic effects on the nature of default forms has not been directly addressed in L2 acquisition studies. In the present study, we compared accuracy and error patterns in verbal agreement inflections in L2 children acquiring Dutch and Greek, keeping the children’s L1 constant (Turkish). Results showed that inflectional defaults in Greek follow universal predictions regarding the morphological underspecification of paradigms. However, the same universal predictions do not apply to the same extent to Dutch. It is argued that phonological properties of inflected forms should be taken into account to explain cross-linguistic differences in the acquisition of inflection. By systematically comparing patterns in child L2 Dutch and Greek, this study shows how universal mechanisms and target language properties work in tandem in the acquisition of inflectional paradigms.