895 resultados para Acute phase protein
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
The retinoblastoma susceptibility gene (Rb) participates in controlling the G1/S-phase transition, presumably by binding and inactivating E2F transcription activator family members. Mouse embryonic fibroblasts (MEFs) with no, one, or two inactivated Rb genes were used to determine the specific contributions of Rb protein to cell cycle progression and gene expression. MEFs lacking both Rb alleles (Rb-/-) entered S phase in the presence of the dihydrofolate reductase inhibitor methotrexate. Two E2F target genes, dihydrofolate reductase and thymidylate synthase, displayed elevated mRNA and protein levels in Rb- MEFs. Since absence of functional Rb protein in MEFs is sufficient for S-phase entry under growth-limiting conditions, these data indicate that the E2F complexes containing Rb protein, and not the Rb-related proteins p107 and p130, may be rate limiting for the G1/S transition. Antineoplastic drugs caused accumulation of p53 in the nuclei of both Rb+/+ and Rb-/- MEFs. While p53 induction led to apoptosis in Rb-/- MEFs, Rb+/- and Rb+/+ MEFs underwent cell cycle arrest without apoptosis. These results reveal that diverse growth signals work through Rb to regulate entry into S phase, and they indicate that absence of Rb protein produces a constitutive DNA replication signal capable of activating a p53-associated apoptotic response.
Resumo:
WT1, the Wilms tumor-suppressor gene, maps to the human chromosomal region 11p13 and encodes a transcriptional repressor, WT1, implicated in controlling normal urogenital development. Microinjection of the WT1 cDNA into quiescent cells or cells in early to mid G1 phase blocked serum-induced cell cycle progression into S phase. The activity of WT1 varied significantly depending on the presence or absence of an alternatively spliced region located upstream of the zinc finger domain. The inhibitory activity of WT1 was abrogated by the overexpression of cyclin E/CDK2 as well as cyclin D1/CDK4. Furthermore, both CDK4- and CDK2-associated kinase activities were downregulated in cells overexpressing WT1, whereas the levels of CDK4, CDK2, and cyclin D1 expression were unchanged. These findings suggest that inhibition of the activity of cyclin/CDK complexes may be involved in mediating the WT1-induced cell cycle block.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purpose: Persistent infection of cervical epithelium with high risk human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV 16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX(TM) adjuvant (HPV16 Immunotherapeutic) for patients with CIN. Experimental design: Patients with CIN (n = 3 1) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy. Results: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients. Conclusions : The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX(TM) adjuvant is safe and induces vaccine antigen specific cell mediated immunity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Ischaemia-reperfusion and toxic injury are leading causes of acute renal failure (ARF). Both of these injury initiators use secondary mediators of damage in oxygen-derived free radicals. Several recent publications about ischaemia-reperfusion and toxin-induced ARF have indicated that plasma membrane structures called caveolae, and their proteins, the caveolins, are potential participants in protecting or repairing renal tissues. Caveolae and caveolins have previously been ascribed many functions, a number of which may mediate cell death or survival of injured renal cells. This review proposes possible pathophysiological mechanisms by which altered caveolin-1 expression and localization may affect renal cell survival following oxidative stress.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.
Resumo:
Objective: To investigate the effects of recombinant human activated protein C (rhAPC) on pulmonary function in acute lung injury (ALI) resulting from smoke inhalation in association with a bacterial challenge. Design: Prospective, randomized, controlled, experimental animal study with repeated measurements. Setting: Investigational intensive care unit at a university hospital. Subjects: Eighteen sheep (37.2 +/- 1.0 kg) were operatively prepared and randomly allocated to either the sham, control, or rhAPC group (n = 6 each). After a tracheotomy had been performed, ALI was produced in the control and rhAPC group by insufflation of 4 sets of 12 breaths of cotton smoke. Then, a 30 mL suspension of live Pseudomonas aeruginosa bacteria (containing 2-5 x 10(11) colony forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle, i.e., 4 sets of 12 breaths of room air and instillation of 30 mL normal saline. The sheep were studied in the awake state for 24 hrs and were ventilated with 100% oxygen. RhAPC (24 mu g/kg/hr) was intravenously administered. The infusion was initiated 1 hr post-injury and lasted until the end of the experiment. The animals were resuscitated with Ringer's lactate solution to maintain constant pulmonary artery occlusion pressure. Measurements and Main Results., In comparison with nontreatment in controls, the infusion of rhAPC significantly attenuated the fall in PaO2/FiO(2) ratio (control group values were 521 +/- 22 at baseline [BL], 72 +/- 5 at 12 hrs, and 74 +/- 7 at 24 hrs, vs. rhAPC group values of 541 +/- 12 at BL, 151 +/- 29 at 12 hours [p < .05 vs. control], and 118 +/- 20 at 24 hrs), and significantly reduced the increase in pulmonary microvascular shunt fraction (Qs/Qt; control group at BL, 0.14 +/- 0.02, and at 24 hrs, 0.65 +/- 0.08; rhAPC group at BL, 0.24 +/- 0.04, and at 24 hrs, 0.45 +/- 0.02 [p < .05 vs. control]) and the increase in peak airway pressure (mbar; control group at BL, 20 +/- 1, and at 24 hrs, 36 +/- 4; rhAPC group at BL, 21 +/- 1, and at 24 hrs, 28 +/- 2 [p < .05 vs. control]). In addition, rhAPC limited the increase in lung 3-nitrotyrosine (after 24 hrs [%]: sham, 7 +/- 2; control, 17 +/- 1; rhAPC, 12 +/- 1 [p < .05 vs. control]), a reliable indicator of tissue injury. However, rhAPC failed to prevent lung edema formation. RhAPC-treated sheep showed no difference in activated clotting time or platelet count but exhibited less fibrin degradation products (1/6 animals) than did controls (4/6 animals). Conclusions. Recombinant human activated protein C attenuated ALI after smoke inhalation and bacterial challenge in sheep, without bleeding complications.
Resumo:
AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE-/- mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE-/- mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE-/- mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE-/- mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance.
Resumo:
Purpose: We performed a multi-centre phase I study to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of the orally available small molecule mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, WX-554, and to determine the optimal biological dose for subsequent trials.
Experimental design: Patients with treatment-refractory, advanced solid tumours, with adequate performance status and organ function were recruited to a dose-escalation study in a standard 3 + 3 design. The starting dose was 25 mg orally once weekly with toxicity, PK and PD guided dose-escalation with potential to explore alternative schedules.
Results: Forty-one patients with advanced solid tumours refractory to standard therapies and with adequate organ function were recruited in eight cohorts up to doses of 150 mg once weekly and 75 mg twice weekly. No dose-limiting toxicities were observed during the study, and a maximum tolerated dose (MTD) was not established. The highest dose cohorts demonstrated sustained inhibition of extracellular signal-regulated kinase (ERK) phosphorylation in peripheral blood mononuclear cells following ex-vivo phorbol 12-myristate 13-acetate stimulation. There was a decrease of 70 ± 26% in mean phosphorylated (p)ERK in C1 day 8 tumour biopsies when compared with pre-treatment tumour levels in the 75 mg twice a week cohort. Prolonged stable disease (>6 months) was seen in two patients, one with cervical cancer and one with ampullary carcinoma.
Conclusions: WX-554 was well tolerated, and an optimal biological dose was established for further investigation in either a once or twice weekly regimens. The recommended phase 2 dose is 75 mg twice weekly.
Resumo:
Background
It is unknown whether a conservative approach to fluid administration or deresuscitation (active removal of fluid using diuretics or renal replacement therapy) is beneficial following haemodynamic stabilisation of critically ill patients.
Purpose
To evaluate the efficacy and safety of conservative or deresuscitative fluid strategies in adults and children with acute respiratory distress syndrome (ARDS), sepsis or systemic inflammatory response syndrome (SIRS) in the post-resuscitation phase of critical illness.
Methods
We searched Medline, EMBASE and the Cochrane central register of controlled trials from 1980 to June 2016, and manually reviewed relevant conference proceedings from 2009 to the present. Two reviewers independently assessed search results for inclusion and undertook data extraction and quality appraisal. We included randomised trials comparing fluid regimens with differing fluid balances between groups, and observational studies investigating the relationship between fluid balance and clinical outcomes.
Results
Forty-nine studies met the inclusion criteria. Marked clinical heterogeneity was evident. In a meta-analysis of 11 randomised trials (2051 patients) using a random-effects model, we found no significant difference in mortality with conservative or deresuscitative strategies compared with a liberal strategy or usual care [pooled risk ratio (RR) 0.92, 95 % confidence interval (CI) 0.82–1.02, I2 = 0 %]. A conservative or deresuscitative strategy resulted in increased ventilator-free days (mean difference 1.82 days, 95 % CI 0.53–3.10, I2 = 9 %) and reduced length of ICU stay (mean difference −1.88 days, 95 % CI −0.12 to −3.64, I2 = 75 %) compared with a liberal strategy or standard care.
Conclusions
In adults and children with ARDS, sepsis or SIRS, a conservative or deresuscitative fluid strategy results in an increased number of ventilator-free days and a decreased length of ICU stay compared with a liberal strategy or standard care. The effect on mortality remains uncertain. Large randomised trials are needed to determine optimal fluid strategies in critical illness.