920 resultados para Active electrode
Resumo:
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custombuilt optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.
Resumo:
An oscillating overvoltage has become a common phenomenon at the motor terminal in inverter-fed variable-speed drives. The problem has emerged since modern insulated gate bipolar transistors have become the standard choice as the power switch component in lowvoltage frequency converter drives. Theovervoltage phenomenon is a consequence of the pulse shape of inverter output voltage and impedance mismatches between the inverter, motor cable, and motor. The overvoltages are harmful to the electric motor, and may cause, for instance, insulation failure in the motor. Several methods have been developed to mitigate the problem. However, most of them are based on filtering with lossy passive components, the drawbacks of which are typically their cost and size. In this doctoral dissertation, application of a new active du/dt filtering method based on a low-loss LC circuit and active control to eliminate the motor overvoltages is discussed. The main benefits of the method are the controllability of the output voltage du/dt within certain limits, considerably smaller inductances in the filter circuit resulting in a smaller physical component size, and excellent filtering performance when compared with typical traditional du/dt filtering solutions. Moreover, no additional components are required, since the active control of the filter circuit takes place in the process of the upper-level PWM modulation using the same power switches as the inverter output stage. Further, the active du/dt method will benefit from the development of semiconductor power switch modules, as new technologies and materials emerge, because the method requires additional switching in the output stage of the inverter and generation of narrow voltage pulses. Since additional switching is required in the output stage, additional losses are generated in the inverter as a result of the application of the method. Considerations on the application of the active du/dt filtering method in electric drives are presented together with experimental data in order to verify the potential of the method.
Resumo:
We carried out an electrochemical study of the cobalt electrodeposition onto glassy carbon electrode from an aqueous solution containing 10-2 M of CoSO4 + 1 M (NH4)2SO4 at natural pH 4.5. The potentiostatic study indicated a progressive 3D nucleation and growth during the deposition process. The average diffusion coefficient calculated for this system was 2.65 X 10-6 cm² s-1 while the ΔG for the formation of stable nucleus was 6.50 X 10-20 J/nuclei. The scanning electron microscopy images indicated the formation of small and homogeneous nucleus onto GCE of approximately 300 nm.
Resumo:
Conventional stationary lead acid batteries positive tubular plates have a specific capacity of about 120 Ah/kg. This value represents an active material utilization coefficient of 50%. The production of these plates includes some initial processes to generate the active PbO2 from a precursor material. In the present work it will be presented a proper and novel methodology to assemble tubular plates directely with nanometric powder of PbO2 particles. The utilization coefficient of these plates was about 80%, and they were able to endure more than 130 severe duty cycles. This high utilization coefficient is a higly desirable feature for electric vehicles batteries.
Resumo:
The enantioselective biotransformation of propranolol (Prop) by the endophytic fungi Phomopsis sp., Glomerella cingulata, Penicillium crustosum, Chaetomium globosum and Aspergillus fumigatus was investigated by studying the kinetics of the aromatic hydroxylation reaction with the formation of 4-hydroxypropranolol (4-OH-Prop). Both Prop enantiomers were consumed by the fungi in the biotransformation process, but the 4-hydroxylation reaction yielded preferentially (-)-(S)-4-OH-Prop. The quantity of metabolites biosynthesized varied slightly among the evaluated endophytic fungi. These results show that all investigated endophytic fungi could be used as biosynthetic tools in biotransformation processes to obtain the enantiomers of 4-OH-Prop.
Resumo:
This paper reports the use of an electrode modified with poly(o-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(o-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10-5 to 1 x 10-4 mol L-1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry).
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
In this paper, a silica-gel-modified carbon paste electrode (Si-gel/CPE) was used to determine the anti-cancer drug emodin by anodic stripping differential pulse voltammetry (ASDPV). The effects of the silica-gel content, the pH of the supporting electrolyte, and the scan rate on the oxidation current of emodin were investigated. The oxidation currents of emodin obtained from ASDPV measurements were linearly correlated with the concentration in the range of 5.0 × 10-9 to 300.0 × 10-9 mol L-1. The limit of detection was determined to be 1.5 × 10-9 mol L-1. The current method was successfully applied to determine emodin in a knotweed root sample, with recovery rate of 92.5% to 98.3%.
Resumo:
Electrodes modified with poly(5-amino-1-naphthol)/Prussian blue (poly(5-NH2-1-NAP)/PB) hybrid films are able to electrochemically reduce H2O2 in medium containing an excess of Na+ cations. This is an important advantage for biosensing applications over electrodes in which only conventionally (electro) deposited Prussian blue is present. Consequently, the aim of this work was to examine the application of templates of ordered arrays of colloidal poly(styrene) spheres (800, 450 and 100 nm in diameter) to produce inverse opal structures of poly(5-NH2-1-NAP)/PB hybrid platforms, in an effort to study the influence of the increase in surface area/volume ratio and higher exposition of the mediator active sites on material performance during H2O2 determination employing the different sized porous structures. Moreover, since the accentuated hydrophilic character of poly(5-NH2-1-NAP)/PB also allows H2O2 electrochemical reduction in inner active sites, issues concerning the amount of mediator electrodeposited on the electrode were also reflected in the observed results.
Resumo:
A nitrate selective electrode was prepared for use in an aggresive medium (high acidic or basic concentration). It is demonstrated that the depending E graph with respect to pNO3- has not a Nernstian response in concentration acidic range upper 0.1 mol/L H2SO4. The observed behaviour is supposed to be due to the formation of a dimeric anion HN2O6-.
Resumo:
The determination of the total calcium in juice, syrups, and other products of the sugar industry is investigated. Total calcium and free calcium is determinated by AAS and employing Ca-selective electrode respectively. A coefficient is obtained for the relation of total calcium with respect to free calcium. The coefficient is employed to determine the content of total calcium in accordance with the following equation.
Resumo:
The electrochemical oxidation on platinum and platinum rhodium bimetallic electrodes was studied by Differential Electrochemical Mass Spectrometry for several ethanol concentrations in solution. It is found that increasing the ethanol concentration the production of the partially oxidized products (acetaldehyde) increases as the concentration increases. On the other hand, addition of 25% at. of rhodium increases the full oxidation to CO2. Another interesting result observed is a correlation between the intensity of the dehydrogenations peak at 0.3 V vs. RHE and the CO2 yield for the different ethanol concentration studied.
Resumo:
An amperometric sensor was constructed, by using humic acids to immobilize Fe3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H2A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe3+/Fe2+ couple at E1/2=+0.78 V vs SCE, using 0.5 mol L-1 KCl and 0.2 mol L-1 acetate/0.020 mol L-1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H2A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(µA) = 7.6286 [H2A] (mmol L-1) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L-1. The electrode showed high stability and was used for H2A determination in a natural orange juice.
Resumo:
In order to a better characterization of a graphite-polyurethane composite intended to be used as a voltammetric sensor, the performance in a square wave voltammetric procedure was investigated. Using hydroquinone (HQ) as a probe, the electrode showed to be useful in square wave voltammetry with limit of detection of 0.28 µmol L-1, with recoveries between 99.1 and 101.5%. The results of the proposed method agreed with HPLC ones within 95% confidence level.