935 resultados para Activated Receptor-gamma


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A insuficiência renal aguda (IRA) é uma patologia que apresenta alta incidência na população e elevada morbimortalidade. Apesar de todos os avanços terapêuticos já obtidos, essas taxas ainda continuam elevadas. Uma possível alternativa, atualmente sugerida, seria o transplante de células-tronco. O processo regenerativo das células-tronco mesenquimais (CTMs) já foi demonstrado em diversos modelos experimentais e em alguns ensaios clínicos. O mecanismo de ação mais sugerido é a ação parácrina das CTMs na área lesada. Ainda, sabe-se que nesse ambiente, citocinas pró-inflamatórias, como TNF-α e IFNγ, ativam as CTMs para seu papel reparador. O presente estudo busca analisar o papel do IFNγ na ativação das CTMs em modelos renais. As CTMs de animais nocautes para receptor de IFNγ (IFNγR KO) e de animais selvagens (controle/ C57/Bl6) foram isoladas do tecido adiposo. Essas células foram caracterizadas por imunofenotipagem e diferenciação em adipócitos e osteócitos. A lesão renal aguda foi obtida através do clampeamento dos pedículos renais de camundongos machos C57/Bl6, por 45 min. Após 4hs da lesão isquêmica, as CTMs IFNγR KO e CTMs controles foram administradas intraperitonealmente, e 24hs após a cirurgia os animais foram sacrificados. O tratamento com CTMs selvagens apresentou significativa redução dos níveis de uréia e creatinina sérica. No entanto, a redução desses níveis séricos com CTMs IFNγR KO foi menos intensa. Com relação à análise da resposta inflamatória do rim, os dados demonstram que a expressão de RNAm de IL-6 é maior nos animais tratados com CTMs IFNγR KO quando comparada ao tratamento com CTMs selvagens; porém, os dois tratamentos apresentam expressão reduzida em comparação aos animais não tratados. Já a expressão de RNAm de IL-10 é maior em animais tratados com CTMs em comparação aos não tratados... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immune thrombocytopenic purpura (ITP) is a common hematological disorder in the childhood, and it is one of the most common forms of autoimmune disease in pediatric patients. The ITP basis is a primary dysfunction of the immune system. This study aimed to analyze the genetic polymorphisms of the Fc gamma receptors IIA and IIIA. The genetic polymorphisms of the Fc receptors gamma IIA (131H/R) and gamma RIIIA (158V/F) were analyzed by polymerase chain reaction-restriction fragment length polymorphism technique. Odds ratio and 95% confidence interval were calculated by chi(2) test. Homozygous polymorphic genotype for the Fc gamma RIIIA was significantly more frequent among patients compared with controls (odds ratio = 0.27; 95% confidence interval, 0.09-0.80; P = 0.03). There was no statistical difference between the ITP group and the controls in the analysis of combinations of alleles of the high-affinity Fc receptor, but the ITP individuals with this combination had a lower duration of disease (P = 0.01). Genetic polymorphisms in immune system genes can be important for ITP pathogenesis and disease outcome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RATIONALE: Pulmonary complications of hematopoietic stem cell transplantation include infections and graft-versus-host diseases, such as idiopathic pneumonia syndrome (IPS). Conflicting data exist regarding the role of the interferon (IFN)-gamma-producing Th1 CD4(+) T-cell subset and IL-17A in IPS. OBJECTIVES: To determine the role of IFN-gamma and IL-17A in the establishment of pulmonary graft-versus-host disease. METHODS: A semiallogeneic murine model based on C57BL/6 x BALB/c as recipients with transplantation of BALB/c RAG2(-/-) bone marrow and transfer of different genetic knockout T cells (T-bet(-/-), IFN-gamma(-/-), IFN-gammaR(-/-)) on a BALB/c background. Lung tissue was examined for parenchymal changes and infiltrating cells by histology and fluorescence-activated cell sorter analysis. MEASUREMENTS AND MAIN RESULTS: After transfer of semiallogeneic bone marrow together with donor CD4(+) T cells lacking IFN-gamma or T-bet-a T-box transcription factor controlling Th1 commitment-we found severe inflammation in the lungs, but no enhancement in other organs. In contrast, wild-type donor CD4(+) T cells mediated minimal inflammation only, and donor CD8(+) T cells were not required for IPS development. Mechanistically, the absence of IFN-gamma or IFN-gamma signaling in pulmonary parenchymal cells promoted expansion of IL-17A-producing CD4(+) T cells and local IL-17A release. In vivo depletion of IL-17A reduced disease severity. CONCLUSIONS: One mechanism of IFN-gamma protection against IPS is negative regulation of the expansion of pathogenic IL-17A-producing CD4(+) T cells through interaction with the IFN-gamma receptor on the pulmonary parenchymal cell population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In several species, a family of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) composed of three isotypes, is expressed in somatic cells and germ cells of the ovary as well as the testis. Invalidation of these receptors in mice or stimulation of these receptors in vivo or in vitro showed that each receptor has physiological roles in the gamete maturation or the embryo development. In addition, synthetic PPAR gamma ligands are recently used to induce ovulation in women with polycystic ovary disease. These results reveal the positive actions of PPAR in reproduction. On the other hand, xenobiotics molecules (in herbicides, plasticizers, or components of personal care products), capable of activating PPAR, may disrupt normal PPAR functions in the ovary or the testis and have consequences on the quality of the gametes and the embryos. Despite the recent data obtained on the biological actions of PPARs in reproduction, relatively little is known about PPARs in gametes and embryos. This review summarizes the current knowledge on the expression and the function of PPARs as well as their partners, retinoid X receptors (RXRs), in germ cells and preimplantation embryos. The effects of natural and synthetic PPAR ligands will also be discussed from the perspectives of reproductive toxicology and assisted reproductive technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In our studies we have focused on the issue of variability and diversity of the $\gamma$ (or $\delta)$ chain T cell receptor (TCR) genes by studying cDNA transcripts in peripheral blood mononuclear cells or $\gamma\delta$ TCR+ T cell clones. The significance of these studies lies in the better understanding of the molecular biology of the $\gamma\delta$ T cell receptor as well as in answering the question whether certain molecular forms predominate in $\gamma\delta$ T cells exhibiting specific immunologic functions. We establish that certain $\gamma$-chain TCR genes exhibit particular patterns of rearrangements in cDNA transcripts in normal individuals. V$\gamma$I subgroup were shown to preferentially rearrange to J$\gamma$2C$\gamma$2 gene segments. These preferential VJC rearrangements, may have implications regarding the potential for diversity and polymorphism of the $\gamma$-chain TCR gene. In addition, the preferential association of V$\gamma$I genes with J$\gamma$2C$\gamma$2, which encode a non-disulfide-linked $\gamma\delta$ TCR, suggests that $\gamma$ chains utilizing V$\gamma$I are predominantly expressed as non-disulfide-linked $\gamma\delta$ TCR heterodimers. The implications of this type of expression remain to be determined. We identified two alternative splicing events of the $\gamma$-chain TCR genes occurring in high frequency in all the normal individuals examined. These events may suggest additional mechanisms of regulation and control as well as diversification of $\gamma\delta$ TCR gene expression. The question whether particular forms of $\gamma$ or $\delta$-chain TCR genes are involved in HLA Class I recognition by specific $\gamma\delta$ cytotoxic T cell clones was addressed. Our results indicated that the T cell clones expressed identical $\gamma$ but distinct $\delta$-chains suggesting that the specificity for recognition of HLA-A2 or HLA-A3 may be conferred by the $\delta$-chain TCR. The issue of the degree of diversity and polymorphism of the $\delta$-chain TCR genes in a patient with a primary immunodeficiency (Omenn's syndrome) was addressed. A limited pattern of rearrangements in peripheral blood transcripts was found, suggesting that a limited $\gamma\delta$ TCR repertoire may be expressed in this particular primary immunodeficiency syndrome. Overall, our findings suggest that $\delta$-chain TCR genes exhibit the potential for significant diversity and that there are certain preferential patterns of expression that may be associated with particular immunologic functions. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anti-common gamma chain (γc) mAb CP.B8 is shown to inhibit interleukin 4 (IL-4)-dependent proliferation of phytohemagglutinin (PHA) activated T cells noncompetitively with respect to cytokine by blocking the IL-4-induced heterodimerization of IL-4Rα and γc receptor chains. Affinities for the binding of IL-4 to Cos-7 cells transfected with huIL-4Rα, and to PHA blasts expressing both IL-4Rα and γc, were used to estimate the affinity of the key interaction between γc and the binary IL-4Rα⋅IL-4 complex on the cell surface. This affinity was defined in terms of the dimensionless ratio [IL-4Rα⋅IL-4⋅γc]/[IL-4Rα⋅IL-4], which we designate KR. The results show that on PHA blasts this interaction is relatively weak; KR ≈ 9, implying that ≈10% of the limiting IL-4Rα chain remains free of γc even at saturating concentrations of IL-4. This quantitative treatment establishes KR as a key measure of the coupling between ligand binding and receptor activation, providing a basis for functional distinctions between different receptors that are activated by ligand-induced receptor dimerization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stimulation of inhibitory neurotransmitter receptors, such as γ-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has mutated GIRK2 channels and shows abnormal development. To understand how the function of GIRK2 channels differs in these two mutant mice, we compared the G protein-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from Girk2 null mutant and weaver mutant mice with those from wild-type mice. Activation of GABAB receptors in wild-type granule cells induced an inwardly rectifying K+ current, which was sensitive to pertussis toxin and inhibited by external Ba2+ ions. The amplitude of the GABAB receptor-activated current was severely attenuated in granule cells isolated from both weaver and Girk2 null mutant mice. By contrast, the G protein-gated inwardly rectifying current and possibly the agonist-independent basal current appeared to be less selective for K+ ions in weaver but not Girk2 null mutant granule cells. Our results support the hypothesis that a nonselective current leads to the weaver phenotype. The loss of GABAB receptor-activated GIRK current appears coincident with the absence of GIRK2 channel protein and the reduction of GIRK1 channel protein in the Girk2 null mutant mouse, suggesting that GABAB receptors couple to heteromultimers composed of GIRK1 and GIRK2 channel subunits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in Met have been identified in human papillary renal carcinomas. We have shown previously that these mutations deregulate the enzymatic activity of Met and that NIH 3T3 cells expressing mutationally activated Met are transformed in vitro and are tumorigenic in vivo. In the present investigation, we find that mutant Met induces the motility of Madin-Darby canine kidney cells in vitro and experimental metastasis of NIH 3T3 cells in vivo, and that the Ras-Raf-MEK-ERK signaling pathway, which has been implicated previously in cellular motility and metastasis, is constitutively activated by the Met mutants. We also report that transgenic mice harboring mutationally activated Met develop metastatic mammary carcinoma. These data confirm the tumorigenic activity of mutant Met molecules and demonstrate their ability to induce the metastatic phenotype.