981 resultados para Activated Factor-vii
Resumo:
The use of finite element analysis (FEA) to design electrical motors has increased significantly in the past few years due the increasingly better performance of modern computers. Even though the analytical software remains the most used tool, the FEA is widely used to refine the analysis and gives the final design to be prototyped. The power factor, a standard data of motor manufactures data sheet is important because it shows how much reactive power is consumed by the motor. This data becomes important when the motor is connected to network. However, the calculation of power factor is not an easy task. Due to the saturation phenomena the input motor current has a high level of harmonics that cannot be neglected. In this work the FEA is used to evaluate a proposed (not limitative) methodology to estimate the power factor or displacement factor of a small single-phase induction motor. Results of simulations and test are compared.
Resumo:
This work analyses pellets prepared with iron ore that has been mechanically activated by high energy ball milling. Pellet feed iron ore was submitted to high-energy ball milling for 60 minutes, and the resulting material was analysed through measurements of particle size and specific surface area, as well as X-ray diffraction. Pellets were prepared from this material. The pellets were heated at temperatures ranging from 1000 to 1250 degrees C in a muffle furnace, and submitted to the maximum temperature during 10 - 12 minutes. The samples were then tested regarding crushing strength, densification and porosity, and were examined in a scanning electronic microscope. The results were compared to those obtained with similar samples made from non-milled pellet feed. It has been shown that through high-energy ball milling of iron ore it is possible to achieve pellets presenting high densification and compressive strength at firing temperatures lower than the usual ones.
Resumo:
The rheological behavior of milk cream was studied for different fat contents (0.10 to 0.31) and for a wide temperature range (2 and 87C) using a rotational rheometer. Newtonian behavior was observed, except for fat content between 0.20 and 0.31 and temperature between 2 and 33C, where viscoplastic behavior was remarkable. The rheological parameters (Newtonian viscosity, plastic viscosity and yield stress) and density were well correlated to temperature and fat content. Tube friction factor during flow of cream was experimentally obtained at various flow rates, temperatures and tube diameters (86 < Re < 2.3 x 104, 38 < Re(B) < 8.8 x 103, 1.1 x 103 < He < 6.7 x 103). The proposed correlations for density and rheological parameters were applied for the prediction of friction factor for laminar and turbulent flow of cream using well-known equations for Newtonian and viscoplastic flow. The good agreement between experimental and predicted values confirms the reliability of the proposed correlations for describing the flow behavior of cream. PRACTICAL APPLICATIONS This paper presents correlations for the calculation of density and rheological parameters (Newtonian viscosity, Bingham plastic viscosity and yield stress) of milk cream as functions of temperature (2-87C) and fat content (0.10-0.31). Because of the large temperature range, the proposed correlations are useful for process design and optimization in dairy processing. An example of practical application is presented in the text, where the correlations were applied for the prediction of friction factor for laminar and turbulent tube flow of cream using well-known equations for Newtonian and viscoplastic flow, which are summarized in the text. The comparison with experimental data obtained at various flow rates, temperatures and tube diameters showed a good agreement, which confirms the reliability of the proposed correlations.
Resumo:
This work aims to study the adsorption of phenol on activated carbons (ACs) and the consecutive in situ regeneration of carbon by Fenton oxidation. Two different operations have been carried Out: (1) a batch procedure in order to investigate the influence of Fe(2+) and H(2)O(2) concentrations; (2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton`s reagent through the saturated AC bed. to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (L27) and an only microporous One (S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best For AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe(2+) and lower concentration of H(2)O(2) (2 times the stoichiometry) lead to a 50% recovery of the initial adsorption capacity during at least four consecutive cycles for L27, while about 20% or less for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30-40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to ""dark"" Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles).
Resumo:
The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This experiment examined the effects of the discharge of water treatment plant (WTP) sludge into the following three types of wastewater treatment systems: a pilot-scale upflow anaerobic sludge blanket (UASB) reactor, a pilot-scale activated sludge system, and a full-scale activated sludge sequencing batch reactor (SBR). The UASB reactor received 50 mg of suspended solids ( SS) of WTP sludge per liter of wastewater in the first phase, and, in the second phase, it received 75 mg SS/L. The pilot-scale activated sludge system received 25 and 50 mg SS/L in the first and second phases, respectively. The full-scale WWTP ( SBR) received approximately 74 mg SS/L. The results of the experiments showed that, despite some negative effects on nitrification, there were positive effects on phosphorus removal, and, furthermore, there was the addition of solids in all systems. Water Environ. Res., 82, 392 ( 2010).
Resumo:
This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
On this paper, the results of an experimental study oil the hydraulic friction loss for small-diameter polyethylene pipes are reported. The experiment was carried out using a range of Reynolds number between 6000 to 72000, obtained by varying discharge at 20 degrees C water temperature, with internal pipe diameters of 10.0 mm, 12.9 mm, 16.1 mm, 17.4 mm and 19.7 mm. According to the analysis results and experimental conditions, the friction factor 0 of the Darcy-Weisbach equation call be estimated with c = 0.300 and m = 0.25. The Blasius equation (c = 0.316 and m = 0.25) gives an overestimate of friction loss, although this fact is non-restrictive for micro-irrigation system designs. The analysis shows that both the Blasius and the adjusted equation parameters allow for accurate friction factor estimates, characterized by low mean error (5.1%).
Resumo:
Background and objective: Patients with COPD can have impaired diaphragm mechanics. A new method of assessing the mobility of the diaphragm, using ultrasound, has recently been validated. This study evaluated the relationship between pulmonary function and diaphragm mobility, as well as that between respiratory muscle strength and diaphragm mobility, in COPD patients. Methods: COPD patients with pulmonary hyperinflation (n = 54) and healthy subjects (n = 20) were studied. Patients were tested for pulmonary function, maximal respiratory pressures and diaphragm mobility using ultrasound to measure the craniocaudal displacement of the left branch of the portal vein. Results: COPD patients had less diaphragm mobility than did healthy individuals (36.5 +/- 10.9 mm vs 46.3 +/- 9.5 mm, P = 0.001). In COPD patients, diaphragm mobility correlated strongly with pulmonary function parameters that quantify air trapping (RV: r = -0.60, P < 0.001; RV/TLC: r = -0.76, P < 0.001), moderately with airway obstruction (FEV1: r = 0.55, P < 0.001; airway resistance: r = -0.32, P = 0.02) and weakly with pulmonary hyperinflation (TLC: r = -0.28, P = 0.04). No relationship was observed between diaphragm mobility and respiratory muscle strength (maximal inspiratory pressure: r = -0.11, P = 0.43; maximal expiratory pressure: r = 0.03, P = 0.80). Conclusion: The results of this study suggest that the reduction in diaphragm mobility in COPD patients is mainly due to air trapping and is not influenced by respiratory muscle strength or pulmonary hyperinflation.
Resumo:
P>Brazilian Santa Ines (SI) sheep are very well-adapted to the tropical conditions of Brazil and are an important source of animal protein. A high rate of twin births was reported in some SI flocks. Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15) are the first two genes expressed by the oocyte to be associated with an increased ovulation rate in sheep. All GDF9 and BMP15 variants characterized, until now, present the same phenotype: the heterozygote ewes have an increased ovulation rate and the mutated homozygotes are sterile. In this study, we have found a new allele of GDF9, named FecGE (Embrapa), which leads to a substitution of a phenylalanine with a cysteine in a conservative position of the mature peptide. Homozygote ewes presenting the FecGE allele have shown an increase in their ovulation rate (82%) and prolificacy (58%). This new phenotype can be very useful in better understanding the genetic control of follicular development; the mechanisms involved in the control of ovulation rate in mammals; and for the improvement of sheep production.
Effects of glutamine on the nuclear factor-kappaB signaling pathway of murine peritoneal macrophages
Resumo:
The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappaB (NF-kappa B) signaling pathway of murine peritoneal macrophages. Since glutamine is essential for the normal functioning of macrophages, it was hypothesized that in vitro glutamine supplementation would increase NF-kappa B activation. Peritoneal macrophages were pretreated with glutamine (0, 0.6, 2 and 10 mM) before incubation with lipopolysaccharide (LPS), and the effects of glutamine on the production of tumor necrosis factor-alpha and on the expression and activity of proteins involved in the NF-kappa B signaling pathway were studied by an enzyme linked immuno-sorbent assay, Western blotting, and an electrophoretic mobility shift assay. Glutamine treatment (2 and 10 mM) increased the activation of NF-kappa B in LPS-stimulated peritoneal macrophages (P < 0.05). In non-stimulated cells, glutamine treatment (2 and 10 mM) significantly reduced I kappa B-alpha protein expression (P < 0.05). Glutamine modulates NF-kappa B signaling pathway by reducing the level of I kappa B-alpha, leading to an increase in NF-kappa B within the nucleus in peritoneal macrophages.
Resumo:
The aim of this study was to determine the apoptotic pathways and mechanisms involved in electronegative LDL [LDL(-)]-induced apoptosis in RAW 264.7 macrophages and the role of Nrf2 in this process. Incubation of RAW 264 7 macrophages with LDL(-) for 24 11 resulted in dose-dependent cell death. Activated caspases were shown to be involved in the apoptosis induced by LDL(-): incubation with the broad caspase inhibitor z-VAD prevented apoptosis in LDL(-)-treated cells CD95 (Fas), CD95 ligand (FasL). CD36 and the tumor necrosis factor (TNF) ligand Tnfsf10 were overexpressed in LDL(-)-treated cells However, Bax, Bcl-2 and Mcl-1 protein levels remained unchanged after LDL(-) treatment. LDL(-) promoted hyperpolarization of the mitochondrial membrane, elevated reactive oxygen species (ROS) production and translocation of Nrf2 to the nucleus, a process absent in cells treated with native LDL Elicited peritoneal macrophages from Nrf2-deficient mice exhibited an elevated apoptotic response after challenge with LDL(-), together with an increase in the production of ROS in the absence of alterations in CD36 expression These results provide evidence that CD36 expression induced by LDL(-) is Nrf2-dependent. Also, it was demonstrated that Nrf2 acts as a compensatory mechanism of LDL(-)-induced apoptosis in macrophages. (C) 2009 Elsevier B V. All rights reserved
Resumo:
Even though the involvement of intracellular Ca(2+) (Ca(i)(2+)) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3)) levels and Ca(i)(2+) release in murine and human hematopoietic stem/ progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+)-dependent kinases in MEK activation. In addition, we identify phospholipase C gamma 2 (PLC gamma 2) as a PLC gamma responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCg inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLC gamma 2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/ progenitor cells. J. Cell. Physiol. 226: 1780-1792, 2011. (C) 2010 Wiley-Liss, Inc.