981 resultados para Acartia clausi, egg production per female as carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important organisms remain unstudied. Calcidiscus is a heavily calcified coccolithophore genus that is widespread and genetically and morphologically diverse. It contributes substantially to global calcium carbonate production, organic carbon production, oceanic carbon burial, and ocean-atmosphere CO2 exchange. Despite the importance of this genus, relatively little work has examined its responses to OA. We examined changes in growth, morphology, and carbon allocation in multiple strains of Calcidiscus leptoporus in response to ocean acidification. We also, for the first time, examined the OA response of Calcidiscus quadriperforatus, a larger and more heavily calcified Calcidiscus congener. All Calcidiscus coccolithophores responded negatively to OA with impaired coccolith morphology and a decreased ratio of particulate inorganic to organic carbon (PIC:POC). However, strains responded variably; C. quadriperforatus showed the most sensitivity, while the most lightly calcified strain of C. leptoporus showed little response to OA. Our findings suggest that calcium carbonate production relative to organic carbon production by Calcidiscus coccolithophores may decrease in future oceans and that Calcidiscus distributions may shift if more resilient strains and species become dominant in assemblages. This study demonstrates that variable responses to OA may be strain or species specific in a way that is closely linked to physiological traits, such as cellular calcite quota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SESAME dataset contains mesozooplankton data collected during September 2008 in the North-West Black Sea (between 44°46' N and 42°29'N latitude and 28°64'E and 30°59'E longitude). Mesozooplankton sampling was undertaken at 9 stations where samples were collected using a Juday net in the 0-10, 10-25, 25-50, 50-100, 100-150, 150-200 m layer. The dataset includes 30 samples analysed for mesozooplankton species composition, species abundance and total biomass. Sampling volume was estimated by multiplying the mouth area with the wire length. The Taxon-specific mesozooplankton abundance sample or aliquots were analyzed under the binocular microscope. Taxonomic identification was done according to Morduhai-Boltovskii et al. 1968. Total biomass was estimated using a tabel with wet weight for each species an stage (Petipa method).