939 resultados para Abraham Abulafia
Resumo:
Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.
Resumo:
We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.
Resumo:
Resonance Raman (RR) spectra are presented for p-nitroazobenzene dissolved in chloroform using 18 excitation Wavelengths, covering the region of (1)(n --> pi*) electronic transition. Raman intensities are observed for various totally symmetric fundamentals, namely, C-C, C-N, N=N, and N-O stretching vibrations, indicating that upon photoexcitation the excited-state evolution occurs along all of these vibrational coordinates. For a few fundamentals, interestingly, in p-nitroazobenzene, it is observed that the RR intensities decrease near the maxima of the resonant electronic (1)(n --> pi*) transition. This is attributed to the interference from preresonant scattering due to the strongly allowed (1)(pi --> pi*) electronic transition. The electronic absorption spectrum and the absolute Raman cross section for the nine Franck-Condon active fundamentals of p-nitroazobenzene have been successfully modeled using Heller's time-dependent formalism for Raman scattering. This employs harmonic description of the lowest energy (1)(n --> pi*) potential energy surface. The short-time isomerization dynamics is then examined from a priori knowledge of the ground-state normal mode descriptions of p-nitroazobenzene to convert the wave packet motion in dimensionless normal coordinates to internal coordinates. It is observed that within 20 fs after photoexcitation in p-nitroazobenzene, the N=N and C-N stretching vibrations undergo significant changes and the unsubstituted phenyl ring and the nitro stretching vibrations are also distorted considerably.
Polymerization of pyrrole and processing of the resulting polypyrrole as blends with plasticised PVC
Resumo:
Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.
Resumo:
We investigate the following problem: given a set of jobs and a set of people with preferences over the jobs, what is the optimal way of matching people to jobs? Here we consider the notion of popularity. A matching M is popular if there is no matching M' such that more people prefer M' to M than the other way around. Determining whether a given instance admits a popular matching and, if so, finding one, was studied by Abraham et al. (SIAM J. Comput. 37(4):1030-1045, 2007). If there is no popular matching, a reasonable substitute is a matching whose unpopularity is bounded. We consider two measures of unpopularity-unpopularity factor denoted by u(M) and unpopularity margin denoted by g(M). McCutchen recently showed that computing a matching M with the minimum value of u(M) or g(M) is NP-hard, and that if G does not admit a popular matching, then we have u(M) >= 2 for all matchings M in G. Here we show that a matching M that achieves u(M) = 2 can be computed in O(m root n) time (where m is the number of edges in G and n is the number of nodes) provided a certain graph H admits a matching that matches all people. We also describe a sequence of graphs: H = H(2), H(3), ... , H(k) such that if H(k) admits a matching that matches all people, then we can compute in O(km root n) time a matching M such that u(M) <= k - 1 and g(M) <= n(1 - 2/k). Simulation results suggest that our algorithm finds a matching with low unpopularity in random instances.
Resumo:
The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.”
Resumo:
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid) → CaTiO3(solid), ΔG° ± 85/(J · mol−1) = −80,140 − 6.302(T/K); 4CaO(solid) + 3TiO2(solid) → Ca4Ti3O10(solid), ΔG° ± 275/(J · mol−1) = −243,473 − 25.758(T/K); 3CaO(solid) + 2TiO2(solid) → Ca3Ti2O7(solid), ΔG° ± 185/(J · mol−1) = −164,217 − 16.838(T/K). The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.
Resumo:
Precompression, wherein the probable settlements are achieved at an accelerated pace through preloading, well before the construction is take up, has been widely used in areas of ground improvement with respect to soft clays. By applying a temporary surcharge load in excess or less than the permanent load, the soil achieves higher initial effective stress and when the final load is applied, the soil experiences, lower load increment ratio or negative load increment ratio. In this paper, based on the laboratory experiments conducted on cochin marine clays and Mangalore marine clays, attempts have been made to analyse the volume change behaviour of preloaded clays. It has been brought out that for a preloaded clay, the final load increment ratio has an important role in its behaviour. Effective preloading not only reduces the final settlement due to primary, the secondary consolidation settlement also gets reduced.
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
This paper presents a methodology for selection of static VAR compensator location based on static voltage stability analysis of power systems. The analysis presented here uses the L-index of load buses, which includes voltage stability information of a normal load flow and is in the range of 0 (no load of system) to 1 (voltage collapse). An approach has been presented to select a suitable size and location of static VAR compensator in an EHV network for system voltage stability improvement. The proposed approach has been tested under simulated conditions on a few power systems and the results for a sample radial network and a 24-node equivalent EHV power network of a practical system are presented for illustration purposes. © 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A robust numerical solution of the input voltage equations (IVEs) for the independent-double-gate metal-oxide-semiconductor field-effect transistor requires root bracketing methods (RBMs) instead of the commonly used Newton-Raphson (NR) technique due to the presence of nonremovable discontinuity and singularity. In this brief, we do an exhaustive study of the different RBMs available in the literature and propose a single derivative-free RBM that could be applied to both trigonometric and hyperbolic IVEs and offers faster convergence than the earlier proposed hybrid NR-Ridders algorithm. We also propose some adjustments to the solution space for the trigonometric IVE that leads to a further reduction of the computation time. The improvement of computational efficiency is demonstrated to be about 60% for trigonometric IVE and about 15% for hyperbolic IVE, by implementing the proposed algorithm in a commercial circuit simulator through the Verilog-A interface and simulating a variety of circuit blocks such as ring oscillator, ripple adder, and twisted ring counter.
Resumo:
Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.
Resumo:
Background: Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. Methodology/Principal Findings: Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3-97.6% (95% Credible Interval (CI): 74.8-99.9) and diagnostic specificity were 89.6-98.5% (95% CI: 79.4-99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6-62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. Conclusions/Significance: Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures.
Resumo:
We propose a new set of input voltage equations (IVEs) for independent double-gate MOSFET by solving the governing bipolar Poisson equation (PE) rigorously. The proposed IVEs, which involve the Legendre's incomplete elliptic integral of the first kind and Jacobian elliptic functions and are valid from accumulation to inversion regimes, are shown to have good agreement with the numerical solution of the same PE for all bias conditions.