662 resultados para ANHARMONIC OSCILLATOR
Resumo:
To ascertain whether the circadian oscillator in the prokaryotic cyanobacterium Synechococcus PCC 7942 regulates the timing of cell division in rapidly growing cultures, we measured the rate of cell division, DNA content, cell size, and gene expression (monitored by luminescence of the PpsbAI::luxAB reporter) in cultures that were continuously diluted to maintain an approximately equal cell density. We found that populations dividing at rates as rapid as once per 10 h manifest circadian gating of cell division, since phases in which cell division slows or stops recur with a circadian periodicity. The data clearly show that Synechococcus cells growing with doubling times that are considerably faster than once per 24 h nonetheless express robust circadian rhythms of cell division and gene expression. Apparently Synechococcus cells are able to simultaneously sustain two timing circuits that express significantly different periods.
Resumo:
A caracterização dielétrica de um material pode ser usada como uma técnica não destrutiva para avaliar e monitorar sua qualidade, bem como no entendimento da relação estrutura-propriedade de um material, através de suas propriedades dielétricas em função da frequência, temperatura, composição química do material, dentre outros. Na literatura há escassez de trabalhos e dados de caracterização dielétrica de filmes a base de biopolímeros. Diante desse contexto, o objetivo deste trabalho foi o desenvolvimento e a construção de uma instrumentação alternativa a equipamentos disponíveis no mercado, como analisadores de rede e de impedância, que pudesse ser utilizada para a caracterização dielétrica de filmes biodegradáveis a base de gelatina. Foi utilizado o método de placas paralelas na determinação da parte real da permissividade conhecida como permissividade relativa ou constante dielétrica (ε\'). O circuito utilizado para a instrumentação foi um oscilador astável com funcionamento baseado no amplificador operacional (741) chaveado pela carga de um capacitor de placas paralelas cujo dielétrico foi uma amostra de filme biodegradável. A partir dos valores da frequência de oscilação e geometria do capacitor, foi possível calcular a capacitância de cada amostra e, consequentemente obter os valores da permissividade relativa do filme, usando relações básicas bem estabelecidas. Os filmes de gelatina foram produzidos pela técnica de casting sendo utilizados como plastificantes o glicerol (G), o sorbitol (S) e suas misturas, na proporção (G:S) de 30:70, 50:50 e 70:30. Os filmes foram caracterizados quanto à umidade e cristalinidade. A permissividade relativa (ε\') dos filmes, determinada a temperatura ambiente, foi avaliada em função da frequência (5 a 50 kHz), tempo de armazenamento, do teor de umidade e tipo de plastificante. A instrumentação projetada e construída foi capaz de medir com precisão a permissividade relativa das amostras, sendo que essa propriedade diminuiu com o aumento da frequência para todos os filmes. Mantendo-se a frequência constante, não houve variação de ε\' para os filmes de gelatina, independente do plastificante, ao longo de um mês de armazenamento a 24 ± 3 °C. O efeito da umidade foi observado em frequências menores que 25 kHz, sendo que quanto maior o teor de umidade maior a permissividade relativa. O efeito do tipo de plastificante na permissividade relativa dos filmes foi observado a baixas frequências (5 kHz) e filmes plastificados com sorbitol apresentaram maiores valores de ε\'. Os filmes plastificados com maior teor de umidade apresentaram menor cristalinidade, portanto maior mobilidade molecular e consequentemente maior a permissividade relativa.
Resumo:
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V(ϕ) = λ|ϕ|^n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c_eff^ 2 = ω = (n − 2)/(n + 2) with ω the effective equation of state. We also obtain the first order correction in k^ 2/ω_eff^ 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω_eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet’s theorem.
Resumo:
As shown by the work of Dansgaard and his colleagues, climate oscillations of one or so millennia duration punctuate much of glacial section of the Greenland ice cores. These oscillations are characterized by 5°C air temperature changes, severalfold dust content changes and 50 ppm CO2 changes. Both the temperature and CO2 change are best explained by changes in the mode of operation of the ocean. In this paper we provide evidence which suggests that oscillations in surface water conditions of similar duration are present in the record from a deep sea core at 50°N. Based on this finding, we suggest that the Greenland climate changes are driven by oscillations in the salinity of the Atlantic Ocean which modulate the strength of the Atlantic's conveyor circulation.
Resumo:
1. The determination and interpretation of electronic collision cross sections -- 2. An electron spectrometer for the study of inelastic collision cross sections -- 3. The inelastic scattering of electrons by helium -- 4. Inelastic collision cross sections of carbon monoxide -- 5. An electron impact study of nitrogen in the kinetic energy range 400 to 600 volts -- 6. Electronic collision cross sections and oscillator strengths for oxygen in the Schumann-Runge region -- 7. Electronic collision cross sections for oxygen at excitation energies above 10 volts -- 8. Electronic collsion cross sections for nitrogen at excitation energies from 10 to 80 electron volts -- 9. Additional collision cross sections for helium, especially in the ionized continuum -- 10. A collision cross section study of CO₂, with a theoretical study of two transitions -- 11. Further developments in the theory and use of the electron spectrometer -- 12. Electronic collision cross sections of water vapor.
Resumo:
Measuring the polarization of a single photon typically results in its destruction. We propose, demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing such a measurement nondestructively. This scheme uses only linear optics and photodetection of ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We vary this QND measurement continuously into the weak regime and use it to perform a nondestructive test of complementarity in quantum mechanics. Our scheme realizes the most advanced general measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary strength.
Resumo:
We compare and contrast the entanglement in the ground state of two Jahn-Teller models. The Exbeta system models the coupling of a two-level electronic system, or qubit, to a single-oscillator mode, while the Exepsilon models the qubit coupled to two independent, degenerate oscillator modes. In the absence of a transverse magnetic field applied to the qubit, both systems exhibit a degenerate ground state. Whereas there always exists a completely separable ground state in the Exbeta system, the ground states of the Exepsilon model always exhibit entanglement. For the Exbeta case we aim to clarify results from previous work, alluding to a link between the ground-state entanglement characteristics and a bifurcation of a fixed point in the classical analog. In the Exepsilon case we make use of an ansatz for the ground state. We compare this ansatz to exact numerical calculations and use it to investigate how the entanglement is shared between the three system degrees of freedom.
Resumo:
An enduring challenge for contemporary physics is to experimentally observe and control quantum behavior in macroscopic systems. We show that a single trapped atomic ion could be used to probe the quantum nature of a mesoscopic mechanical oscillator precooled to 4 K, and furthermore, to cool the oscillator with high efficiency to its quantum ground state. The proposed experiment could be performed using currently available technology.
Resumo:
Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)(1A) and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose ( 115 mg/kg) and high-dose ( 250 mg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration ( the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC ( altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem oscillator in perceptual rivalry alternations and symptoms of psychosis.
Resumo:
We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent experiment, using negativity of the Wigner function and the nonexistence of well-behaved positive P function. We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar the photon-subtracted state is to a superposition of coherent states.
Resumo:
Rainfall variability occurs over a wide range of temporal scales. Knowledge and understanding of such variability can lead to improved risk management practices in agricultural and other industries. Analyses of temporal patterns in 100 yr of observed monthly global sea surface temperature and sea level pressure data show that the single most important cause of explainable, terrestrial rainfall variability resides within the El Nino-Southern Oscillation (ENSO) frequency domain (2.5-8.0 yr), followed by a slightly weaker but highly significant decadal signal (9-13 yr), with some evidence of lesser but significant rainfall variability at interclecadal time scales (15-18 yr). Most of the rainfall variability significantly linked to frequencies tower than ENSO occurs in the Australasian region, with smaller effects in North and South America, central and southern Africa, and western Europe. While low-frequency (LF) signals at a decadal frequency are dominant, the variability evident was ENSO-like in all the frequency domains considered. The extent to which such LF variability is (i) predictable and (ii) either part of the overall ENSO variability or caused by independent processes remains an as yet unanswered question. Further progress can only be made through mechanistic studies using a variety of models.
Resumo:
We show that an optical parametric oscillator based on three concurrent chi((2)) nonlinearities can produce, above threshold, bright output beams of macroscopic intensities which exhibit strong tripartite continuous-variable entanglement. We also show that there are two ways that the system can exhibit a three-mode form of the Einstein-Podolsky-Rosen paradox, and calculate the extracavity fluctuation spectra that may be measured to verify our predictions.
Resumo:
The present study investigates the coordination between two people oscillating handheld pendulums, with a special emphasis on the influence of the mechanical properties of the effector systems involved. The first part of the study is an experiment in which eight pairs of participants are asked to coordinate the oscillation of their pendulum with the other participant's in an in-phase or antiphase fashion. Two types of pendulums, A and B, having different resonance frequencies (Freq A=0.98 Hz and Freq B=0.64 Hz), were used in different experimental combinations. Results confirm that the preferred frequencies produced by participants while manipulating each pendulum individually were close to the resonance frequencies of the pendulums. In their attempt to synchronize with one another, participants met at common frequencies that were influenced by the mechanical properties of the two pendulums involved. In agreement with previous studies, both the variability of the behavior and the shift in the intended relative phase were found to depend on the task-effector asymmetry, i.e., the difference between the mechanical properties of the effector systems involved. In the second part of the study, we propose a model to account for these results. The model consists of two cross-coupled neuro-mechanical units, each composed of a neural oscillator driving a wrist-pendulum system. Taken individually, each unit reproduced the natural tendency of the participants to freely oscillate a pendulum close to its resonance frequency. When cross-coupled through the vision of the pendulum of the other unit, the two units entrain each other and meet at a common frequency influenced by the mechanical properties of the two pendulums involved. The ability of the proposed model to address the other effects observed as a function of the different conditions of the pendulum and intended mode of coordination is discussed.
Resumo:
In this PhD study, the effects of the cation substitutions on the physical properties of pyroxenes have been discussed. The results of this work extend the knowledge on pyroxenes with different chemical compositions. These properties might be used in the development of ceramic pigments, advanced materials and for the mineralogical phase identification. First of all, the crystallographic differences between Ge and Si pyroxenes have been examined. The structure of C2/c Ca rich Ge clinopyroxenes is very close to the low pressure C2/c structural configuration found in Ca-rich Si-pyroxenes. The shear of the unit cell is very similar, and the difference between a Ge end member and the corresponding Si-rich one is less than 1°. Instead, a remarkable difference exists between Ca-poor Si and Ge clinopyroxenes. First, Ca-poor Ge pyroxenes do not display a P21/c symmetry, but retain the C2/c symmetry; second, the observed C2/c structure shows, at room pressure, the configuration with highly kinked tetrahedral chains characteristic of the high pressure C2/c symmetry of Si Ca-poor pyroxenes. In orthopyroxenes, with Pbca symmetry, Ge-pyroxenes have volume larger than Si-pyroxenes. Samples along the system CaCoGe2O6 - CoCoGe2O6 have been synthesized at three different temperatures: 1050 °C, 1200 °C and 1250 °C. The aim of these solid state syntheses was to obtain a solid solution at ambient pressure, since the analogues Si-system needs high pressure. Unfortunately, very limited solution occurs because the structure forms of the two end member (high temperature for CaCoGe2O6 and high pressure CoCoGe2O6) are incompatible. The phase diagram of this system has been sketched and compared to that of Si. The cobalt end member (CoCoGe2O6) is stable at ambient pressure in two symmetries: at 1050 °C C2/c and 1200 °C Pbca. The impurity phase formed during these experiments is cobalt spinel. Raman spectroscopy has been used to investigate the vibrational properties of Ca-pyroxenes CaCoGe2O6, CaMgGe2O6, CaMgSi2O6 and CaCoSi2O6. A comparison between silicate and germanate pyroxenes shows significant changes in peak positions of the corresponding modes caused mainly by the difference of the Ge-Si atomic weight along with the distortion and compression of the coordination polyhedra. Red shift in Raman spectra of germanates has been calculated by a rough scale factor calculated by a simple harmonic oscillator model, considering the different bond lengths for 4-coordinated Si ~ 1.60- 1.65 Å vs Ge–O distance ~1.70 - 1.80 Å. The Raman spectra of CaMgGe2O6 and CaCoGe2O6 have been classified, in analogy with silicate (Wang et al., 2001) counterparts, in different ranges: - R1 (880-640 cm-1): strong T-O stretching modes of Ge and non-bridging O1 and O2 atoms within the GeO4 tetrahedron; - R2 (640-480 cm-1): stretching/bending modes of Ge-Obr-Ge bonds (chain stretching and chain bending); - R4 (480-360 cm-1): O-Ge-O vibrations; - R3 (360-240 cm-1): motions of the cations in M2 and M1 sites correlated with tetrahedral chain motion and tilting tetrahedra; - R5 (below 240 cm-1): lattice modes. The largest shift with respect to CaMgSi2O6 - CaCoSi2O6 is shown by the T-O stretching and chain modes. High-pressure Raman spectroscopy (up to about 8 GPa) on the same samples of Ca-pyroxenes using an ETH-type diamond anvil cell shows no phase transition within the P-ranges investigated, as all the peak positions vary linearly as a function of pressure. Our data confirm previous experimental findings on Si-diopside (Chopelas and Serghiou, 2000). In the investigated samples, all the Raman peaks shift upon compression, but the major changes in wavenumber with pressure are attributed to the chain bending (Ge-Obr-Ge bonds) and tetrahedra stretching modes (Ge-Onbr). Upon compression, the kinking angle, the bond lengths and T-T distances between tetrahedra decrease and consequently the wavenumber of the bending chain mode and tetrahedra stretching mode increases. Ge-pyroxenes show the higher P-induced peak-position shifts, being more compressible than corresponding silicates. The vibrational properties of CaM2+Ge2O6 (M2+ =Mg, Mn, Fe, Co, Ni, Zn) are reported for the first time. The wavenumber of Ge-Obr-Ge bending modes decreases linearly with increasing ionic radius of the M1 cation. No simple correlation has been found with M1 atomic mass or size or crystallographic parameters for the peak at ~850 cm-1 and in the low wavenumber regions. The magnetic properties of the system CaCoSi2O6 - CoCoSi2O6 have been investigated by magnetometry. The join is always characterized by 1 a.p.f.u. of cobalt in M1 site and this causes a pure collinear antiferromagnetic behaviour of the intra-chain superexchange interaction involving Co ions detected in all the measurements, while the magnetic order developed by the cobalt ions in M2 site (intra-chain) is affected by weak ferromagnetism, due to the non-collinearity of their antiferromagnetic interaction. In magnetically ordered systems, this non-collinearity effect promotes a spin canting of anti-parallel aligned magnetic moments and thus is a source of weak ferromagnetic behaviour in an antiferromagnetic. The weak ferromagnetism can be observed only for the samples with Co content higher than 0.5 a.p.f.u. in M2, when the concentration is sufficiently high to create a long range order along the M2 chain which is magnetically independent of M1 chain. The ferromagnetism was detected both in the M(T) at 10 Oe and M(H).
Resumo:
In vivo, neurons of the globus pallidus (GP) and subthalamic nucleus (STN) resonate independently around 70 Hz. However, on the loss of dopamine as in Parkinson's disease, there is a switch to a lower frequency of firing with increased bursting and synchronization of activity. In vitro, type A neurons of the GP, identified by the presence of Ih and rebound depolarizations, fire at frequencies (≤80 Hz) in response to glutamate pressure ejection, designed to mimic STN input. The profile of this frequency response was unaltered by bath application of the GABAA antagonist bicuculline (10 μM), indicating the lack of involvement of a local GABA neuronal network, while cross-correlations of neuronal pairs revealed uncorrelated activity or phase-locked activity with a variable phase delay, consistent with each GP neuron acting as an independent oscillator. This autonomy of firing appears to arise due to the presence of intrinsic voltage- and sodium-dependent subthreshold membrane oscillations. GABAA inhibitory postsynaptic potentials are able to disrupt this tonic activity while promoting a rebound depolarization and action potential firing. This rebound is able to reset the phase of the intrinsic oscillation and provides a mechanism for promoting coherent firing activity in ensembles of GP neurons that may ultimately lead to abnormal and pathological disorders of movement.