966 resultados para 670800 Basic Metal Products (incl. Smelting)
Resumo:
One of the greatest challenges for the study of photocatalysts is to devise new catalysts that possess high activity under visible light illumination. This would allow the use of an abundant and green energy source, sunlight, to drive chemical reactions. Gold nanoparticles strongly absorb both visible light and UV light. It is therefore possible to drive chemical reactions utilising a significant fraction of full sunlight spectrum. Here we prepared gold nanoparticles supported on various oxide powders, and reported a new finding that gold nanoparticles on oxide supports exhibit significant activity for the oxidation of formaldehyde and methanol in the air at ambient temperature, when illuminated with visible light. We suggested that visible light can greatly enhance local electromagnetic fields and heat gold nanoparticles due to surface plasmon resonance effect which provides activation energy for the oxidation of organic molecules. Moreover, the nature of the oxide support has an important influence on the activity of the gold nanoparticles. The finding reveals the possibility to drive chemical reactions with sunlight on gold nanoparticles at ambient temperature, highlighting a new direction for research on visible light photocatalysts. Gold nanoparticles supported on oxides also exhibit significant dye oxidation activity under visible light irradiation in aqueous solution at ambient temperature. Turnover frequencies of the supported gold nanoparticles for the dye degradation are much higher than titania based photocatalysts under both visible and UV light. These gold photocatalysts can also catalyse phenol degradation as well as selective oxidation of benzyl alcohol under UV light. The reaction mechanism for these photocatalytic oxidations was studied. Gold nanoparticles exhibit photocatalytic activity due to visible light heating gold electrons in 6sp band, while the UV absorption results in electron holes in gold 5d band to oxidise organic molecules. Silver nanoparticles also exhibit considerable visible light and UV light absorption due to surface plasmon resonance effect and the interband transition of 4d electrons to the 5sp band, respectively. Therefore, silver nanoparticles are potentially photocatalysts that utilise the solar spectrum effectively. Here we reported that silver nanoparticles at room temperature can be used to drive chemical reactions when illuminated with light throughout the solar spectrum. The significant activities for dye degradation by silver nanoparticles on oxide supports are even better than those by semiconductor photocatalysts. Moreover, silver photocatalysts also can degrade phenol and drive the oxidation of benzyl alcohol to benzaldehyde under UV light. We suggested that surface plasmon resonance effect and interband transition of silver nanoparticles can activate organic molecule oxidations under light illumination.
Resumo:
Providing a positive user experience (UX) has become the key differentiator for products to win a competition in mature markets. To ensure that a product will support enjoyable experiences for its users, assessment of UX should be conducted early during the design and development process. However, most UX frameworks and evaluation techniques focus on understanding and assessing user’s experience with functional prototypes or existing products. This situation delays UX assessment until the late phases of product development which may result in costly design modifications and less desirable products. A qualitative study was conducted to investigate anticipated user experience (AUX) to address this issue. Twenty pairs of participants were asked to imagine an interactive product, draw their product concept, and anticipate their interactions and experiences with it. The data was analyzed to identify general characteristics of AUX. We found that while positive AUX was mostly related to an imagined/desired product, negative AUX was mainly associated with existing products. It was evident that the pragmatic quality of product was fundamental, and significantly influenced user’s anticipated experiences. Furthermore, the hedonic quality of product received more focus in positive than negative AUX. The results also showed that context, user profile, experiential knowledge, and anticipated emotion could be reflected in AUX. The understanding of AUX will help product designers to better foresee the users’ underlying needs and to focus on the most important aspects of their positive experiences, which in turn facilitates the designers to ensure pleasurable UX from the start of the design process.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
Exhibited at The Fashioning the Future Awards Showcase exhibition Fashioning the Future Awards is the leading international cross-disciplinary platform for celebrating innovative initiatives towards fashion design for sustainability, its development and communication. The 2011 awards are a showcase for exceptional work that celebrates ‘Unique’ ways to create our futures. Fashioning the Future is designed and coordinated by the Centre for Sustainable Fashion at London College of Fashion. Unique Enterprise Award The Unique Enterprise Award was offered for the consideration of the opportunities that arise from the necessity to solve the issues around water, waste, wellbeing, energy, equality and biodiversity. Winner Alice Payne According to Alice Payne there is no one-size-fits-all approach to creating a sustainable fashion system. Existing companies will need to evolve, change the way they design and produce garments, offer services rather than products, and engage with the end user to consider the end of life and future lives of their garments. The ThinkLifecycle content management system (CMS) acts as a bridge between existing industry practices and new, redirected practice in which sustainability is at the forefront of commercial thinking. Its chief aim is to embed lifecycle thinking within a company at a daily, operational level.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
This paper explores how the effective use of performance management systems (PMS) essentialises collective identities through the use of textual performances. The discursive effect of PMS operates to simplify members’ logic to allow them to understand and negotiate the complex nature of collective performance. Two case studies, drawing on a qualitative study of the implementation of PMS in two public sector organisations, point to the unique contribution of symbolic effects of one popular PMS, the balanced scorecard (BSC). Findings suggest that the BSC visualising the trajectory of achieving organisational vision through multiple perspectives, measures and linkages is a valuable identity product to achieve organisational success. The case studies also provide an analysis that contrasts aspects of the diffusion and promotion of collective identities through the use of the BSC. This demonstrates that clear direction in the identity management process is an important factor in the design and implementation of successful PMS programs. The value of this paper is to heighten recognition of the symbolic agency of PMS, as it serves as a subtle mechanism for identity management, and also to foster the collaboration of communication specialists and management accountants to achieve common organisational goals.
Resumo:
The existing Collaborative Filtering (CF) technique that has been widely applied by e-commerce sites requires a large amount of ratings data to make meaningful recommendations. It is not directly applicable for recommending products that are not frequently purchased by users, such as cars and houses, as it is difficult to collect rating data for such products from the users. Many of the e-commerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user's query are retrieved and recommended to the user. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their online navigation behaviour. This paper proposes to integrate collaborative filtering and search-based techniques to provide personalized recommendations for infrequently purchased products. Two different techniques are proposed, namely CFRRobin and CFAg Query. Instead of using the target user's query to search for products as normal search based systems do, the CFRRobin technique uses the products in which the target user's neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAg Query technique uses the products that the user's neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAg Query perform better than the standard Collaborative Filtering (CF) and the Basic Search (BS) approaches, which are widely applied by the current e-commerce applications. The CFRRobin and CFAg Query approaches also outperform the e- isting query expansion (QE) technique that was proposed for recommending infrequently purchased products.
Resumo:
'Delivery' (2005) was an installation work at MetroArts, Brisbane that incorporated drawings, paintings, video projections and temporary architectural structures. The work made central use out of a mock public event, staged in a Gold Coast park by the artist. Documentary footage of the ambiguous event comprised one of the video projections and formed the basic iconographic palette upon which the rest of the works were based. Using 3D animation as well as conventional drawing and paintign approaches, the works conveyed a palpable sense of fragmentation and social dislocation - a quality that was heightened by the reflective panels that bisected the exhibition space. The work was [part of the MetroArts Artistic Program in 2005 and its video elements were included in the 2008 exhibition Video Ground, curated by Rachel O'Reilly for Multimedia Art Asia Pacific (MAAP)/Bangkok Experimental Film Festival (Touring show). The work was the subject of a feature article by Mark Pennings in Eyeline magazine, and also appeared on the front cover of that issue.
Resumo:
Background: Access to cardiac services is essential for appropriate implementation of evidence-based therapies to improve outcomes. The Cardiac Accessibility and Remoteness Index for Australia (Cardiac ARIA) aimed to derive an objective, geographic measure reflecting access to cardiac services. Methods: An expert panel defined an evidence-based clinical pathway. Using Geographic Information Systems (GIS), a numeric/alpha index was developed at two points along the continuum of care. The acute category (numeric) measured the time from the emergency call to arrival at an appropriate medical facility via road ambulance. The aftercare category (alpha) measured access to four basic services (family doctor, pharmacy, cardiac rehabilitation, and pathology services) when a patient returned to their community. Results: The numeric index ranged from 1 (access to principle referral center with cardiac catheterization service ≤ 1 hour) to 8 (no ambulance service, > 3 hours to medical facility, air transport required). The alphabetic index ranged from A (all 4 services available within 1 hour drive-time) to E (no services available within 1 hour). 13.9 million (71%) Australians resided within Cardiac ARIA 1A locations (hospital with cardiac catheterization laboratory and all aftercare within 1 hour). Those outside Cardiac 1A were over-represented by people aged over 65 years (32%) and Indigenous people (60%). Conclusion: The Cardiac ARIA index demonstrated substantial inequity in access to cardiac services in Australia. This methodology can be used to inform cardiology health service planning and the methodology could be applied to other common disease states within other regions of the world.
Resumo:
Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of insect pests. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 dimensions showed that, in both the horizontal and vertical directions and at all temperatures examined, insect numbers were positively correlated over short (0-5cm) distances, and negatively correlated over longer (≥10cm) distances. Analysis in 3 dimensions showed a similar pattern, with positive correlations over short distances and negative correlations at longer distances. At 35°C, insects were located significantly further from the grain surface than at 25 and 30°C. Dispersion metrics showed statistically significant aggregation in all cases. This is the first research using small sample units, high sampling intensities, and a range of temperatures, to show spatial structuring of R. dominica populations over short distances. This research will have significant implications for sampling in the stored grains industry.
Resumo:
The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.
Resumo:
Due to proliferation of online stores prior expectations that retailing would move completely online were not fulfilled. Previous research about consumers’ preference of retailing channels suggested that online sales are driven by the convenience of online shopping, or as a natural extension of online searches. This paradigm has changed over the years. Changes in consumer behaviour are indicating that while consumers are searching online using various information sources to learn about products, ultimately when purchasing, consumers are shifting between online and offline retailing channels depending on various factors. Online shopping is still considered to be a convenient way to purchase goods, but the convenience is not the key factor. This qualitative research is based on 22 in-depth interviews with shoppers in Australia.
Resumo:
This article recognises the potential importance of Islamic finance products in Australia, along with the current regulatory impediments preventing Australia from becoming a leader in the Asia-Pacific Islamic finance market. Taking into account the potential importance of, and impediments to, Islamic finance, this article highlights, through the historical development and contemporary state of Islamic finance, its economic, social and political benefits to Australia. Once a case for embracing Islamic finance is made, the main current regulatory impediments to Australia becoming a key player in the Islamic finance market within the Asia-Pacific region are highlighted. This article then argues that, rather than requiring any separate regulatory regime, the current regulatory impediments may be overcome through amendments to existing laws to ensure parity of treatment in Australia between the Islamic finance market and the conventional finance market. The Australian income tax regime is utilised as a case study demonstrate how parity of treatment could be achieved via amendment by taking two frequent and separate Islamic finance transactions. This article concludes that the economic, social and political benefits potentially warrant Australia embracing Islamic finance and that, with the right regulatory measures, Australia could lay the foundation to become a leader in the Asia-Pacific Islamic finance market.
Resumo:
Product innovation is an important contributor to the performance of infrastructure projects in the construction industry. Maximizing the potential for innovative product adoption is a challenging task due to the complexities of the construction innovation system. A qualitative methodology involving interviews with major construction project stakeholders is employed to address the research question: ‘What are the main obstacles to the adoption of innovative products in the road industry?’ The characteristics of six key product innovation obstacles in Australian road projects are described. The six key obstacles are: project goal misalignment, client pressures, weak contractual relations, lack of product trialling, inflexible product specifications and product liability concerns. A snapshot of the dynamics underlying these obstacles is provided. There are few such assessments in the literature, despite the imperative to improve construction innovation rates globally in order to deliver road infrastructure projects of increasing size and complexity. Key obstacles are interpreted through an open innovation construct, providing direction for policy to enhance the uptake of innovation across the construction product supply network. Early evidence suggests the usefulness of an open innovation construct that integrates three conceptual lenses: network governance, absorptive capacity and knowledge intermediation, in order to interpret product adoption obstacles in the context of Australian road infrastructure projects. The paper also provides practical advice and direction for government and industry organizations that wish to promote the flow of innovative product knowledge across the construction supply network.