1000 resultados para 660403 Transport
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3041477]
Resumo:
This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.
Resumo:
The mobility of heavy metals (Zn, Cd, Pb and Ni) was studied in the laboratory acidic leaching two different soils around Ibadan with simulated acid rain. The sampling was carried out from two different sites viz: Orogun and Ilupeju respectively. For Orogun site a depth of 128cm was reached (consisting of four horizons). Different length of polyvinyl chloride (PVC) pipes were cut for different soil horizon depth as observed on the field. The PVC pipes were packed with requires masses of soil. This is then leached using simulated acid rain of different pH of 2.0, 4.0, 6.0 and 8.0 after spiking with known volume of standard solution of metals of interest. It was found that simulated acid rain enhanced the mobility of metals in solution. The pH, Cation Exchange capacity, % clay and organic matter were found to contributed majority to the mobility of metals. Generally as observed, the mobility of metal was to follow the order Zn>Ni>Pb>Cd as the soil is becoming more acidic
Resumo:
Metal complexes that utilize the 9,10-phenanthrene quinone diimine (phi) moiety bind to DNA through the major groove. These metallointercalators can recognize DNA sites and perform reactions on DNA as a substrate. The site-specific metallointercalator Λ-1-Rh(MGP)_2phi^(5+) competitively disrupts the major groove binding of a transcription factor, yAP-1, from an oligonucleotide that contains a common binding site. The demonstration that metal complexes can prevent transcription factor binding to DNA site-specifically is an important step in using metallointercalators as therapeutics.
The distinctive photochemistry of metallointercalators can also be applied to promote long range charge transport in DNA. Experiments using duplexes with regions 4 to 10 nucleotides long containing strictly adenine and thymine sequences of varying order showed that radical migration is more dependent on the sequence of bases, and less dependent on the distance between the guanine doublets. This result suggests that mechanistic proposals of long range charge transport must involve all the bases.
RNA/DNA hybrids show charge migration to guanines from a remote site, thus demonstrating that nucleic acid stacking other than B-form can serve as a radical bridge. Double crossover DNA assemblies also provide a medium for charge transport at distances up to 100 Å from the site of radical introduction by a tethered metal complex. This radical migration was found to be robust to mismatches, and limited to individual, electronically distinct base stacks. In single DNA crossover assemblies, which have considerably greater flexibility, charge migration proceeds to both base stacks due to conformational isomers not present in the rigid and tightly annealed double crossovers.
Finally, a rapid, efficient, gel-based technique was developed to investigate thymine dimer repair. Two oligonucleotides, one radioactively labeled, are photoligated via the bases of a thymine-thymine interface; reversal of this ligation is easily visualized by gel electrophoresis. This assay was used to show that the repair of thymine dimers from a distance through DNA charge transport can be accomplished with different photooxidants.
Thus, nucleic acids that support long range charge transport have been shown to include A-track DNA, RNA/DNA hybrids, and single and double crossovers, and a method for thymine dimer repair detection using charge transport was developed. These observations underscore and extend the remarkable finding that DNA can serve a medium for charge transport via the heteroaromatic base stack.
Resumo:
This thesis describes a series of experimental studies of lead chalcogenide thermoelectric semiconductors, mainly PbSe. Focusing on a well-studied semiconductor and reporting good but not extraordinary zT, this thesis distinguishes itself by answering the following questions that haven’t been answered: What represents the thermoelectric performance of PbSe? Where does the high zT come from? How (and how much) can we make it better? For the first question, samples were made with highest quality. Each transport property was carefully measured, cross-verified and compared with both historical and contemporary report to overturn commonly believed underestimation of zT. For n- and p-type PbSe zT at 850 K can be 1.1 and 1.0, respectively. For the second question, a systematic approach of quality factor B was used. In n-type PbSe zT is benefited from its high-quality conduction band that combines good degeneracy, low band mass and low deformation potential, whereas zT of p-type is boosted when two mediocre valence bands converge (in band edge energy). In both cases the thermal conductivity from PbSe lattice is inherently low. For the third question, the use of solid solution lead chalcogenide alloys was first evaluated. Simple criteria were proposed to help quickly evaluate the potential of improving zT by introducing atomic disorder. For both PbTe1-xSex and PbSe1-xSx, the impacts in electron and phonon transport compensate each other. Thus, zT in each case was roughly the average of two binary compounds. In p-type Pb1-xSrxSe alloys an improvement of zT from 1.1 to 1.5 at 900 K was achieved, due to the band engineering effect that moves the two valence bands closer in energy. To date, making n-type PbSe better hasn’t been accomplished, but possible strategy is discussed.
Resumo:
40 p.
Resumo:
The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc>>1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc. Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc>>1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.
Resumo:
The electrical transport properties and lattice spacings of simple cubic Te-Au, Te-Au-Fe, and Te-Au-Mn alloys, prepared by rapid quenching from the liquid state, hove been measured and correlated with a proposed bond structure. The variations of superconducting transition temperature, absolute thermoelectric power, and lattice spacing with Te concentration all showed related anomalies in the binary Te-Au alloys. The unusual behavior of these properties has been interpreted by using nearly free electron theory to predict the effect of the second Brillouin zone boundary on the area of the Fermi surface, and the electronic density of states. The behavior of the superconducting transition temperature and the lattice parameter as Fe and Mn ore added further supports the proposed interpretation as well as providing information on the existence of localized magnetic states in the ternary alloys. In addition, it was found that a very distinct bond structure effect on the transition temperatures of the Te-Au-Fe alloys could be identified.
Resumo:
Soil erosion is a natural process that occurs when the force of wind, raindrops or running water on the soil surface exceeds the cohesive forces that bind the soil together. In general, vegetation cover protects the soil from the effects of these erosive forces. However, land management activities such as ploughing, burning or heavy grazing may disturb this protective layer, exposing the underlying soil. The decision making process in rural catchment management is often supported by the predictive modelling of soil erosion and sediment transport processes within the catchment, using established techniques such as the Universal Soil Loss Equation [USLE] and the Agricultural Nonpoint Source pollution model [AGNPS]. In this article, the authors examine the range of erosion models currently available and describe the application of one of these to the Burrishoole catchment on the north-west coast of Ireland, which has suffered heavy erosion of blanket peat in recent years.
Resumo:
Research laboratories in the Burrishoole catchment have been the focus of salmonid research since 1955. One aspect of the research has been to monitor the number of salmon and sea trout migrating to sea as smolts and returning to the catchment as adults. In the early 1990s it became clear that the smolt output from the catchment had declined over the previous two decades. At about the same time the presence of fine particles of peat silt in the hatchery became increasingly apparent and led to a higher incidence of mortality of young fry. These observations and management difficulties led to a study of silt transport in the surface waters of the catchment, which is described in this article. The authors describe geology, soils, climate and hydrology of Burrishoole before examining the sediment deposition in Lough Feeagh.