996 resultados para 510
Resumo:
We study the asymptotics conjecture of Malle for dihedral groups Dl of order 2l, where l is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen-Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.
Resumo:
We give a proof of Iitaka's conjecture C2,1 using only elementary methods from algebraic geometry.
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
Bei der Bestimmung der irreduziblen Charaktere einer Gruppe vom Lie-Typ entwickelte Lusztig eine Theorie, in der eine sogenannte Fourier-Transformation auftaucht. Dies ist eine Matrix, die nur von der Weylgruppe der Gruppe vom Lie-Typ abhängt. Anhand der Eigenschaften, die eine solche Fourier- Matrix erfüllen muß, haben Geck und Malle ein Axiomensystem aufgestellt. Dieses ermöglichte es Broue, Malle und Michel füur die Spetses, über die noch vieles unbekannt ist, Fourier-Matrizen zu bestimmen. Das Ziel dieser Arbeit ist eine Untersuchung und neue Interpretation dieser Fourier-Matrizen, die hoffentlich weitere Informationen zu den Spetses liefert. Die Werkzeuge, die dabei entstehen, sind sehr vielseitig verwendbar, denn diese Matrizen entsprechen gewissen Z-Algebren, die im Wesentlichen die Eigenschaften von Tafelalgebren besitzen. Diese spielen in der Darstellungstheorie eine wichtige Rolle, weil z.B. Darstellungsringe Tafelalgebren sind. In der Theorie der Kac-Moody-Algebren gibt es die sogenannte Kac-Peterson-Matrix, die auch die Eigenschaften unserer Fourier-Matrizen besitzt. Ein wichtiges Resultat dieser Arbeit ist, daß die Fourier-Matrizen, die G. Malle zu den imprimitiven komplexen Spiegelungsgruppen definiert, die Eigenschaft besitzen, daß die Strukturkonstanten der zugehörigen Algebren ganze Zahlen sind. Dazu müssen äußere Produkte von Gruppenringen von zyklischen Gruppen untersucht werden. Außerdem gibt es einen Zusammenhang zu den Kac-Peterson-Matrizen: Wir beweisen, daß wir durch Bildung äußerer Produkte von den Matrizen vom Typ A(1)1 zu denen vom Typ C(1) l gelangen. Lusztig erkannte, daß manche seiner Fourier-Matrizen zum Darstellungsring des Quantendoppels einer endlichen Gruppe gehören. Deswegen ist es naheliegend zu versuchen, die noch ungeklärten Matrizen als solche zu identifizieren. Coste, Gannon und Ruelle untersuchen diesen Darstellungsring. Sie stellen eine Reihe von wichtigen Fragen. Eine dieser Fragen beantworten wir, nämlich inwieweit rekonstruiert werden kann, zu welcher endlichen Gruppe gegebene Matrizen gehören. Den Darstellungsring des getwisteten Quantendoppels berechnen wir für viele Beispiele am Computer. Dazu müssen unter anderem Elemente aus der dritten Kohomologie-Gruppe H3(G,C×) explizit berechnet werden, was bisher anscheinend in noch keinem Computeralgebra-System implementiert wurde. Leider ergibt sich hierbei kein Zusammenhang zu den von Spetses herrührenden Matrizen. Die Werkzeuge, die in der Arbeit entwickelt werden, ermöglichen eine strukturelle Zerlegung der Z-Ringe mit Basis in bekannte Anteile. So können wir für die meisten Matrizen der Spetses Konstruktionen angeben: Die zugehörigen Z-Algebren sind Faktorringe von Tensorprodukten von affinen Ringe Charakterringen und von Darstellungsringen von Quantendoppeln.
Resumo:
In a previous paper we have determined a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type σ(x)y"n(x)+τ(x)y'n(x)-λnyn(x)=0. In this paper, we give another such formula which enables us to present a generic formula for the values of monic classical orthogonal polynomials at their boundary points of definition.
Resumo:
Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.
Resumo:
In this 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums thas was published by Askey and Gasper in 1976. The de Branges functions Tn/k(t) are defined as the solutions of a system of differential recurrence equations with suitably given initial values. The essential fact used in the proof of the Bieberbach and Milin conjectures is the statement Tn/k(t)<=0. In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special function system Λn/k(t) which (by Todorov and Wilf) was realized to be directly connected with de Branges', Tn/k(t)=-kΛn/k(t), and the positivity results in both proofs Tn/k(t)<=0 are essentially the same. In this paper we study differential recurrence equations equivalent to de Branges' original ones and show that many solutions of these differential recurrence equations don't change sign so that the above inequality is not as surprising as expected. Furthermore, we present a multiparameterized hypergeometric family of solutions of the de Branges differential recurrence equations showing that solutions are not rare at all.
Resumo:
In dieser Arbeit werden grundlegende Algorithmen für Ore-Algebren in Mathematica realisiert. Dabei entsteht eine Plattform um die speziellen Beschränkungen und Möglichkeiten dieser Algebren insbesondere im Zusammenhang mit Gröbnerbasen an praktischen Beispielen auszuloten. Im Gegensatz zu den existierenden Paketen wird dabei explizit die Struktur der Ore-Algebra benutzt. Kandri-Rody und Weispfenning untersuchten 1990 Verallgemeinerungen von Gröbnerbasen auf Algebren ordnungserhaltender Art (``algebras of solvable type''). Diese verhalten sich so, dass Buchbergers Algorithmus stets eine Gröbnerbasis findet. Es wird ein Beispiel gezeigt, an dem klar wird, dass es mehr Ore-Algebren ordnungserhaltender Art gibt als die in der Literatur stets betrachteten Operator-Algebren. Für Ore-Algebren ordnungserhaltender Art werden Algorithmen zu Gröbnerbasen implementiert. Anschließend wird der Gröbner-Walk für Ore-Algebren untersucht. Der Gröbner-Walk im kommutativen Fall wird mit einem instruktiven Beispiel vorgestellt. Dann wird zum nichtkommutativen Fall übergegangen. Es wird gezeigt, dass die Eigenschaft ordnungserhaltender Art zu sein, auf der Strecke zwischen zwei Ordnungen erhalten bleibt. Eine leichte Modifikation des Walks für Ore-Algebren wird implementiert, die im Erfolgsfall die Basis konvertiert und ansonsten abbricht. Es werden Beispiele angegeben, in denen der modifizierte Walk funktioniert sowie ein Beispiel analysiert, in dem er versagt.
Resumo:
Die "Einführung in die stochastische Simulation mit Fathom" führt in die Simulation mit der Computersoftware Fathom ein und entstand im Rahmen meines Dissertationsprojekts. Voraussetzung sind elementare Grundkenntnisse in dieser Software, z.B. für die Analyse von eindimensionalen Daten. Die Arbeit basiert auf einer ausführlichen Analyse stochastischer Situationen, die als Zufallsexperimente modelliert werden können. Sie wurde ursprünglich für Studenten der Veranstaltung "Elementare Stochastik" an der Universität Kassel didaktisch aufbereitet. Sie ist aber auch für alle Lehrenden und Lernenden an Schule und Hochschule gedacht, die die stochastische Simulation mit Fathom erlernen wollen. Das Dokument dient dazu, eine systematische Anleitung zum Erstellen eigener Simulationen zu geben. Eine didaktische Hilfestellung bietet dazu das dreigegliederte Simulationskonzept: 1. Festlegen des stochastischen Modell, 2. Erstellen eines Simulationsplans und 3. Realisierung in FATHOM. Verschiedene Simulationsarten werden ausführlich an einem Beispiel vorgestellt und können in Arbeitsumgebungen selbst erzeugt werden. Die Erstellung der Arbeit wurde mit Mitteln des BLK-Projektes Netzwerk Wissenschaftliche Weiterbildung für Lehramtsberufe (NWWL) an der Universität Kassel gefördert.