945 resultados para 5,6-dihydro-2-pyrone
Resumo:
The quantum yield of synthetic eumelanin is known to be extremely low and it has recently been reported to be dependent on excitation wavelength. In this paper, we present quantum yield as a function of excitation wavelength between 250 and 500 nm, showing it to be a factor of 4 higher at 250 nm than at 500 nm. In addition, we present a definitive map of the steady-state fluorescence as a function of excitation and emission wavelengths, and significantly, a three-dimensional map of the specific quantum yield: the fraction of photons absorbed at each wavelength that are subsequently radiated at each emission wavelength. This map contains clear features, which we attribute to certain structural models, and shows that radiative emission and specific quantum yield are negligible at emission wavelengths outside the range of 585 and 385 nm (2.2 and 3.2 eV), regardless of excitation wavelength. This information is important in the context of understanding melanin biofunctionality, and the quantum molecular biophysics therein. (c) 2005 American Institute of Physics.
Resumo:
Previously reported excitation spectra for eumelanin are sparse and inconsistent. Moreover, these studies have failed to account for probe beam attenuation and emission reabsorption within the samples, making them qualitative at best. We report for the first time quantitative excitation spectra for synthetic eumelanin, acquired for a range of solution concentrations and emission wavelengths. Our data indicate that probe beam attenuation and emission reabsorption significantly affect the spectra even in low-concentration eumelanin solutions and that previously published data do not reflect the true excitation profile. We apply a correction procedure (previously applied to emission spectra) to account for these effects. Application of this procedure reconstructs the expected relationship of signal intensity with concentration, and the normalized spectra show a similarity in form to the absorption profiles. These spectra reveal valuable information regarding the photophysics and photochemistry of eumelanin. Most notably, an excitation peak at 365 urn (3.40 eV), whose position is independent of emission wavelength, is possibly attributable to a 5,6-dihydroxyindole-2-carboxylic acid (DHICA) component singly linked to a polymeric structure.
Resumo:
We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins-key functional bio-macromolecular systems responsible for photoprotection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.
Resumo:
We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor-5,6,-dihydroxyindole-2-carboxylic acid ( DHICA) - and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers ( possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations ( leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a "low cost" natural resource in these systems
Resumo:
In this article, we review the current state of knowledge concerning the physical and chemical properties of the eumelanin pigment. We examine properties related to its photoprotective functionality, and draw the crucial link between fundamental molecular structure and observable macroscopic behaviour. Where necessary, we also briefly review certain aspects of the pheomelanin literature to draw relevant comparison. A full understanding of melanin function, and indeed its role in retarding or promoting the disease state, can only be obtained through a full mapping of key structure-property relationships in the main pigment types. We are engaged in such an endeavor for the case of eumelanin.
Resumo:
Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.
Resumo:
The ability of a previously PCB-enriched microbial culture from Venice Lagoon marine sediments to dechlorinate pentachlorophenol (PCP) and 2,3,5-trichlorophenol (2,3,5-TCP) was confirmed under anaerobic conditions in microcosms consisting of site water and sediment. Dechlorination activities against Aroclor 1254 PCB mixture were also confirmed as control. Pentachlorophenol was degraded to 2,4,6-TCP (75.92±0.85 mol%), 3,5-DCP (6.40±0.75 mol%), and phenol (15.40±0.87 mol%). From the distribution of the different dechlorination products accumulated in the PCP-spiked cultures over time, two dechlorination pathways for PCP were proposed: (i) PCP to 2,3,4,6-TeCP, then to 2,4,6-TCP through the removal of both meta double-flanked chlorine substituents (main pathway); (ii) alternately, PCP to 2,3,5,6-TeCP, 2,3,5-TCP, 3,5-DCP, then phenol, through the removal of the para double-flanked chlorine, followed by ortho single-flanked chlorines, and finally meta unflanked chlorines (minor pathway). Removal of meta double-flanked chlorines is thus preferred over all other substituents. 2,3,5-TCP, that completely lacks double-flanked chlorines, was degraded to 3,5-DCP through removal of the ortho single-flanked chlorine, with a 99.6% reduction in initial concentration of 2,3,5-TCP by week 14. 16S rRNA PCR-DGGE using Chloroflexi-specific primers revealed a different role of the two microorganisms VLD-1 and VLD-2, previously identified as dechlorinators in the Aroclor 1254 PCB-enriched community, in the dehalogenation of chlorophenols. VLD-1 was observed both in PCP- and TCP-dechlorinating communities, whereas VLD-2 only in TCP-dechlorinating communities. This indicates that VLD-1 and VLD-2 may both dechlorinate ortho single-flanked chlorines, but only VLD-1 is able to remove double-flanked meta or para chlorines.
Radiocarbon age, Mg/Ca and d18O measurements on planktonic foraminifera of sediment core GeoB12605-3
Resumo:
The sea surface temperature (SST) of the tropical Indian Ocean is a major component of global climate teleconnections. While the Holocene SST history is documented for regions affected by the Indian and Arabian monsoons, data from the near-equatorial western Indian Ocean are sparse. Reconstructing past zonal and meridional SST gradients requires additional information on past temperatures from the western boundary current region. We present a unique record of Holocene SST and thermocline depth variations in the tropical western Indian Ocean as documented in foraminiferal Mg/Ca ratios and d18O from a sediment core off northern Tanzania. For Mg/Ca and thermocline d18O, most variance is concentrated in the centennial to bicentennial periodicity band. On the millennial time scale, an early to mid-Holocene (~7.8-5.6 ka) warm phase is followed by a temperature drop by up to 2°C, leading to a mid-Holocene cool interval (5.6-4.2 ka). The shift is accompanied by an initial reduction in the difference between surface and thermocline foraminiferal d18O, consistent with the thickening of the mixed layer and suggestions of a strengthened Walker circulation. However, we cannot confirm the expected enhanced zonal SST gradient, as the cooling of similar magnitude had previously been found in SSTs from the upwelling region off Sumatra and in Flores air temperatures. The SST pattern probably reflects the tropical Indian Ocean expression of a large-scale climate anomaly rather than a positive Indian Ocean Dipole-like mean state.
Resumo:
Two experiments tested the tolerance of steers (Bos taurus) to sorghum ergot (Claviceps africana) during cooler months in south-east Queensland. Sorghum grain containing 2.8% ergot and 28 mg/kg ergot alkaloids (84% dihydroergosine, 10% dihydroelymoclavine, 6% festuclavine) was incorporated into feedlot rations. In a previous study in summer–autumn, ergot (1.1–4.4 mg alkaloids/kg ration) severely reduced performance in steers when the temperature–humidity index (THI; dry bulb temperature °C + 0.36 dew-point temperature °C + 41.2) was ~70, whereas a THI of ~79 was tolerated by steers fed ergot-free rations. Experiment 1 was conducted in winter–spring, with rations containing 0, 2.8, 5.6, 8.2 or 11.2 mg ergot alkaloids/kg ration. All ergot inclusions depressed feed intake (14% average reduction) and growth rate (34% average reduction), even when the weekly average daily THI was less than 65. Rectal temperatures were occasionally elevated in ergot-fed steers (P < 0.05), primarily when the THI exceeded ~65. All ergot inclusions depressed plasma prolactin concentrations in steers. Experiment 2 was predominantly carried out in winter, with weekly average daily THI <65 throughout the experiment. Rations containing 0, 0.28, 0.55 or 1.1 mg ergot alkaloids/kg were fed for 4 weeks but produced no significant effect on feed intakes and growth rates of steers. Alkaloid concentrations were then changed to 0, 2.1, 4.3 and 1.1 mg/kg, respectively. Subsequently, feed intakes declined by 17.5% (P < 0.05), and growth rates by 28% (P > 0.05) in the group receiving 4.3 mg/kg alkaloid, compared with Controls. Plasma prolactin concentrations were depressed, relative to the Controls, by dietary alkaloid inclusion greater than 1.1 mg/kg, with alkaloid intake of 4.3 mg/kg causing the greatest reduction (P < 0.05). Cattle performance in these studies shows steers can tolerate up to ~2 mg ergot alkaloid/kg (0.2% ergot) in feedlot rations under low THI conditions (< ~60–65), but previous findings indicate a much lower threshold will apply at higher THI (>65).
Resumo:
Two experiments tested the tolerance of steers (Bos taurus) to sorghum ergot (Claviceps africana) during cooler months in south-east Queensland. Sorghum grain containing 2.8% ergot and 28 mg/kg ergot alkaloids (84% dihydroergosine, 10% dihydroelymoclavine, 6% festuclavine) was incorporated into feedlot rations. In a previous study in summer–autumn, ergot (1.1–4.4 mg alkaloids/kg ration) severely reduced performance in steers when the temperature–humidity index (THI; dry bulb temperature °C + 0.36 dew-point temperature °C + 41.2) was ~70, whereas a THI of ~79 was tolerated by steers fed ergot-free rations. Experiment 1 was conducted in winter–spring, with rations containing 0, 2.8, 5.6, 8.2 or 11.2 mg ergot alkaloids/kg ration. All ergot inclusions depressed feed intake (14% average reduction) and growth rate (34% average reduction), even when the weekly average daily THI was less than 65. Rectal temperatures were occasionally elevated in ergot-fed steers (P < 0.05), primarily when the THI exceeded ~65. All ergot inclusions depressed plasma prolactin concentrations in steers. Experiment 2 was predominantly carried out in winter, with weekly average daily THI <65 throughout the experiment. Rations containing 0, 0.28, 0.55 or 1.1 mg ergot alkaloids/kg were fed for 4 weeks but produced no significant effect on feed intakes and growth rates of steers. Alkaloid concentrations were then changed to 0, 2.1, 4.3 and 1.1 mg/kg, respectively. Subsequently, feed intakes declined by 17.5% (P < 0.05), and growth rates by 28% (P > 0.05) in the group receiving 4.3 mg/kg alkaloid, compared with Controls. Plasma prolactin concentrations were depressed, relative to the Controls, by dietary alkaloid inclusion greater than 1.1 mg/kg, with alkaloid intake of 4.3 mg/kg causing the greatest reduction (P < 0.05). Cattle performance in these studies shows steers can tolerate up to ~2 mg ergot alkaloid/kg (0.2% ergot) in feedlot rations under low THI conditions (< ~60–65), but previous findings indicate a much lower threshold will apply at higher THI (>65).
Resumo:
Life Cycle Climate Performance (LCCP) is an evaluation method by which heating, ventilation, air conditioning and refrigeration systems can be evaluated for their global warming impact over the course of their complete life cycle. LCCP is more inclusive than previous metrics such as Total Equivalent Warming Impact. It is calculated as the sum of direct and indirect emissions generated over the lifetime of the system “from cradle to grave”. Direct emissions include all effects from the release of refrigerants into the atmosphere during the lifetime of the system. This includes annual leakage and losses during the disposal of the unit. The indirect emissions include emissions from the energy consumption during manufacturing process, lifetime operation, and disposal of the system. This thesis proposes a standardized approach to the use of LCCP and traceable data sources for all aspects of the calculation. An equation is proposed that unifies the efforts of previous researchers. Data sources are recommended for average values for all LCCP inputs. A residential heat pump sample problem is presented illustrating the methodology. The heat pump is evaluated at five U.S. locations in different climate zones. An excel tool was developed for residential heat pumps using the proposed method. The primary factor in the LCCP calculation is the energy consumption of the system. The effects of advanced vapor compression cycles are then investigated for heat pump applications. Advanced cycle options attempt to reduce the energy consumption in various ways. There are three categories of advanced cycle options: subcooling cycles, expansion loss recovery cycles and multi-stage cycles. The cycles selected for research are the suction line heat exchanger cycle, the expander cycle, the ejector cycle, and the vapor injection cycle. The cycles are modeled using Engineering Equation Solver and the results are applied to the LCCP methodology. The expander cycle, ejector cycle and vapor injection cycle are effective in reducing LCCP of a residential heat pump by 5.6%, 8.2% and 10.5%, respectively in Phoenix, AZ. The advanced cycles are evaluated with the use of low GWP refrigerants and are capable of reducing the LCCP of a residential heat by 13.7%, 16.3% and 18.6% using a refrigerant with a GWP of 10. To meet the U.S. Department of Energy’s goal of reducing residential energy use by 40% by 2025 with a proportional reduction in all other categories of residential energy consumption, a reduction in the energy consumption of a residential heat pump of 34.8% with a refrigerant GWP of 10 for Phoenix, AZ is necessary. A combination of advanced cycle, control options and low GWP refrigerants are necessary to meet this goal.
Resumo:
Background: The levels of Th1/Th2 cytokine can alter in pathogenic infection in children with pneumonia. Objectives: To evaluate Th1/Th2 cytokine profile and its diagnostic value in M. pneumoniae pneumonia in children. Patients and Methods: Children with M. pneumoniae mono-infection and 30 healthy children were tested with cytokines assay. We used real time PCR to detect M. pneumoniae in children with pneumonia. Results: M. pneumoniae test was positive in 2188 (16.62%) out of 13161 pneumonia children. Children aged 5 - 9 years had the highest rate and summer was a season with high rate of M. pneumoniae incidence in Zhejiang province. During the course of study, in 526 pneumonia children with M. pneumoniae mono-infection and 30 healthy children cytokines assay was performed. IL-2 level of M. pneumoniae pneumonia children was lower than that of healthy children (median levels, pg/mL: IL-2: 3.2 vs. 5.7, P = 0.00), while IL-4, IL-10 and IFN-γ were higher than in healthy children (median levels, pg/mL: IL-4: 3.2 vs. 1.5, P = 0.00; IL-10: 5.6 vs. 2.5, P = 0.001; IFN-γ: 20.4 vs. 4.8, P = 0.001). Conclusions: IL-2 decreases and IL-4, IL-10 and IFN-γ increase in children with M. pneumoniae pneumonia, which has a promising prospect in diagnosis of this disease in clinical practice.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
The Zeeman effect of chlorine nuclear quadrupole resonance in polycrystalline samples of 2,6-, 2,5 and 3,5-dichlorophenol has been investigated at room temperature in order to study the effect of hydrogen bonding on the electric field gradient asymmetry parameter n. While the two n.q.r. lines in 3,5-dichlorophenol gave an asymmetry parameter of 10%, those in 2,6- and 2,5-dichlorophenol gave different values of n for the two chlorines. The chlorine atom which is ortho to the OH group and involved in hydrogen bonding (i.e., corresponding to the low frequency line) gave an asymmetry parameter of 0.21 in 2,6-dichlorophenol and 0.17 in 2,5-dichlorophenol while the other chlorine (i.e., corresponding to the high frequency line) gave a lower value of 0.12 in 2,6-dichlorophenol and 0.11 in 2,5-dichlorophenol. These values of n are discussed in terms of hydrogen bonding and bond parameters.
Resumo:
A detailed analysis of the 1H and 13C NMR spectra of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones is presented. The chemical shift of the C-5 angular methyl, the C-2 alkyl/olefinic (C-10)/C-2 methine protons, the aromatic proton shieldings and the characteristic AMX and ABX spectral pattern of the ketomethylene and bridgehead protons were found to be sensitive to the phenyl ring orientation (anisotropy). These distinctive features could be used for configurational distinction for this class of compounds. With increasing ortho-methoxy substitution on the phenyl ring, considerable deshilelding of the bridgehead proton was observed (ca. 0.6 ppm). Absence of the C-2 alkyl group in the desalkyl isomers resulted in substantial changes in the chemical shifts of different protons. A study of the NMR spectra of the corresponding bicyclic compounds with C-2 methoxy/hydroxy substitution instead of the aryl group revealed that the anisotropy of the phenyl ring and the electronegative oxygen substituents have opposite effects. The 13C NMR spectral assignment of each carbon resonance of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones and the corresponding C-2 methoxy/hydroxy/chloro and methyl bicyclic compounds are reported. Additional ortho-methoxy substitution on the phenyl ring was found to produce considerable high field shifts of the C-10 and C-1 carbon resonances. A high-field shift was observed for the C-6 and C-8 carbonyl carbons, presumably due to 1,3-dicarbonyl interactions. The chemical shifts of C-1 aromatic, C-10 alkyl and C-2 carbons, which are sensitive to exo/endo isomerism, could be utilized in differentiating a pair of isomers.