924 resultados para 3D motion model
Resumo:
An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.
Resumo:
This paper explores the benefits of using immersive and interactive virtual reality environments to teach Dentistry. We present a tool for educators to manipulate and edit virtual models. One of the main contributions is that multimedia information can be semantically associated with parts of the model, through an ontology, enriching the experience; for example, videos can be linked to each tooth demonstrating how to extract them. The use of semantic information gives a greater flexibility to the models, since filters can be applied to create temporary models that show subsets of the original data in a human friendly way. We also explain how the software was written to run in arbitrary multi-projection environments. © 2011 Springer-Verlag.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.
Resumo:
Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.
Resumo:
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization. © 2013 American Physical Society.
Resumo:
STUDY DESIGN. Observational cohort study. OBJECTIVE. To investigate spinal coordination during preferred and fast speed walking in pain-free subjects with and without a history of recurrent low back pain (LBP). SUMMARY OF BACKGROUND DATA. Dynamic motion of the spine during walking is compromised in the presence of back pain (LBP), but its analysis often presents some challenges. The coexistence of significant symptoms may change gait because of pain or adaptation of the musculoskeletal structures or both. A history of LBP without the overlay of a current symptomatic episode allows a better model in which to explore the impact on spinal coordination during walking. METHODS. Spinal and lower limb segmental motions were tracked using electromagnetic sensors. Analyses were conducted to explore the synchrony and spatial coordination of the segments and to compare the control and subjects with LBP. RESULTS. We found no apparent differences between the groups for either overall amplitude of motion or most indicators of coordination in the lumbar region; however, there were significant postural differences in the mid-stance phase and other indicators of less phase locking in controls compared with subjects with LBP. The lower thoracic spinal segment was more affected by the history of back pain than the lumbar segment. CONCLUSION. Although small, there were indicators that alterations in spinal movement and coordination in subjects with recurrent LBP were due to adaptive changes rather than the presence of pain. © 2013, Lippincott Williams & Wilkins.
Resumo:
In this work we study a Hořava-like 5-dimensional model in the context of braneworld theory. The equations of motion of such model are obtained and, within the realm of warped geometry, we show that the model is consistent if and only if λ takes its relativistic value 1. Furthermore, we show that the elimination of problematic terms involving the warp factor second order derivatives are eliminated by imposing detailed balance condition in the bulk. Afterwards, Israel's junction conditions are computed, allowing the attainment of an effective Lagrangian in the visible brane. In particular, we show that the resultant effective Lagrangian in the brane corresponds to a (3 + 1)-dimensional Hořava-like model with an emergent positive cosmological constant but without detailed balance condition. Now, restoration of detailed balance condition, at this time imposed over the brane, plays an interesting role by fitting accordingly the sign of the arbitrary constant β, insuring a positive brane tension and a real energy for the graviton within its dispersion relation. Also, the brane consistency equations are obtained and, as a result, the model admits positive brane tensions in the compactification scheme if, and only if, β is negative and the detailed balance condition is imposed. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.
Resumo:
Laminin-1 has been reported as one of the factors responsible for the nucleation of calcium phosphates and, in vitro, has been reported to selectively recruit osteoprogenitors. This article focused on its in vivo effects, and evaluated the effect of laminin-1 local application on osseointegration. Polished cylindrical hydroxyapatite implants were coated with laminin-1 (test) and the bone responses in the rabbit tibiae after 2 and 4 weeks were evaluated and compared to the non-coated implants (control). Before the samples were processed for histological sectioning, they were three-dimensionally analysed with micro computed tomography (μCT). Both evaluation methods were analysed with regards to bone area around the implant and bone to implant contact. From the histologic observation, new bone formation around the laminin-1 coated implant at 2 weeks seemed to have increased the amount of supporting bone around the implant, however, at 4 weeks, the two groups presented no notable differences. The two-dimensional and three-dimensional morphometric evaluation revealed that both histologic and three-dimensional analysis showed some tendency in favour of the test group implants, however there was no statistical significance between the test and control group results. © 2012 International Association of Oral and Maxillofacial Surgeons.
Resumo:
Purpose: This study compared the biomechanical behavior of tilted long implant and vertical short implants to support fixed prosthesis in an atrophic maxilla. Materials and Methods: The maxilla model was built based on a tomographic image of the patient. Implant models were based on micro-computer tomography imaging of implants. The different configurations considered were M4S, four vertical anterior implants; M4T, two mesial vertical implants and two distal tilted (45°) implants in the anterior region of the maxilla; and M6S, four vertical anterior implants and two vertical posterior implants. Numerical simulation was carried out under bilateral 150N loads applied in the cantilever region in axial (L1) and oblique (45°) (L2) direction. Bone was analyzed using the maximum and minimum principal stress (σmax and σmin), and von Mises stress (σvM) assessments. Implants were analyzed using the σvM. Results: The higher σmax was observed at: M4T, followed by M6S/L1, M6S/L2, M4S/L2, and M4S/L1 and the higher σvM: M4T/L1, M4T/L2 and M4S/L2, M6S/L2, M4S/L1, and M6S/L1. Conclusions: The presence of distal tilted (all-on-four) and distal short implants (all-on-six) resulted in higher stresses in both situations in the maxillary bone in comparison to the presence of vertical implants (all-on-four). © 2013 Wiley Periodicals, Inc.
Resumo:
We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geologia Regional - IGCE