995 resultados para 3D integration
Resumo:
Research into the anatomical substrates and "principles" for integrating inputs from separate sensory surfaces has yielded divergent findings. This suggests that multisensory integration is flexible and context dependent and underlines the need for dynamically adaptive neuronal integration mechanisms. We propose that flexible multisensory integration can be explained by a combination of canonical, population-level integrative operations, such as oscillatory phase resetting and divisive normalization. These canonical operations subsume multisensory integration into a fundamental set of principles as to how the brain integrates all sorts of information, and they are being used proactively and adaptively. We illustrate this proposition by unifying recent findings from different research themes such as timing, behavioral goal, and experience-related differences in integration.
Resumo:
This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially continuous roughness maps have potential for the identification of localized roughness features, which would be a significant improvement over traditional profiling methods. This report specifically illustrates the use of terrestrial laser scanning (TLS) and photogrammetry using a process known as structure from motion (SFM) to acquire point clouds and illustrates the use of these point clouds in evaluating road roughness. Five roadway sections were chosen for scanning and testing: three gravel road sections, one portland cement concrete (PCC) section, and one asphalt concrete (AC) section. To compare clouds obtained from terrestrial laser scanning and photogrammetry, the coordinates of the clouds for the same section on the same date were matched using open source computer code. The research indicates that the technologies described are very promising for evaluating road roughness. The major advantage of both technologies is the large amount of data collected, which allows the evaluation of the full surface. Additional research is needed to further develop the use of dense 3D point clouds for roadway assessment.
Resumo:
In this paper we examine the influence of economic factors to explain partisan support for European integration over the last three decades. We find that partisan support is larger in `poorer' countries with direct economic bene fits from EU membership. On the contrary, parties in countries aff ected by the Maastricht criteria are more Euro-sceptical. Moreover, we find weak evidence for larger partisan support in countries with more developed welfare states, and that the support for European integration fluctuates in parallel with the business cycle. Finally, our results indicate that the importance of economic factors in determining partisan support for European integration has grown in recent periods. JEL classi fication: F15, F42, F53, F55, H60. Key words: European Integration; Partisan Ideology; Maastricht Criteria; European Budget; Benefi ts from Trade.
Resumo:
This paper evaluates the global welfare impact of China's trade integration and technological change in a multi-country quantitative Ricardian-Heckscher-Ohlin model.We simulate two alternative growth scenarios: a "balanced" one in which China's productivity grows at the same rate in each sector, and an "unbalanced" one in whichChina's comparative disadvantage sectors catch up disproportionately faster to theworld productivity frontier. Contrary to a well-known conjecture (Samuelson 2004),the large majority of countries experience significantly larger welfare gains whenChina's productivity growth is biased towards its comparative disadvantage sectors.This finding is driven by the inherently multilateral nature of world trade.
Resumo:
Global positioning systems (GPS) offer a cost-effective and efficient method to input and update transportation data. The spatial location of objects provided by GPS is easily integrated into geographic information systems (GIS). The storage, manipulation, and analysis of spatial data are also relatively simple in a GIS. However, many data storage and reporting methods at transportation agencies rely on linear referencing methods (LRMs); consequently, GPS data must be able to link with linear referencing. Unfortunately, the two systems are fundamentally incompatible in the way data are collected, integrated, and manipulated. In order for the spatial data collected using GPS to be integrated into a linear referencing system or shared among LRMs, a number of issues need to be addressed. This report documents and evaluates several of those issues and offers recommendations. In order to evaluate the issues associated with integrating GPS data with a LRM, a pilot study was created. To perform the pilot study, point features, a linear datum, and a spatial representation of a LRM were created for six test roadway segments that were located within the boundaries of the pilot study conducted by the Iowa Department of Transportation linear referencing system project team. Various issues in integrating point features with a LRM or between LRMs are discussed and recommendations provided. The accuracy of the GPS is discussed, including issues such as point features mapping to the wrong segment. Another topic is the loss of spatial information that occurs when a three-dimensional or two-dimensional spatial point feature is converted to a one-dimensional representation on a LRM. Recommendations such as storing point features as spatial objects if necessary or preserving information such as coordinates and elevation are suggested. The lack of spatial accuracy characteristic of most cartography, on which LRM are often based, is another topic discussed. The associated issues include linear and horizontal offset error. The final topic discussed is some of the issues in transferring point feature data between LRMs.
Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction.
Resumo:
Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.
Resumo:
The objective of this work was to build mock-ups of complete yerba mate plants in several stages of development, using the InterpolMate software, and to compute photosynthesis on the interpolated structure. The mock-ups of yerba-mate were first built in the VPlants software for three growth stages. Male and female plants grown in two contrasting environments (monoculture and forest understory) were considered. To model the dynamic 3D architecture of yerba-mate plants during the biennial growth interval between two subsequent prunings, data sets of branch development collected in 38 dates were used. The estimated values obtained from the mock-ups, including leaf photosynthesis and sexual dimorphism, are very close to those observed in the field. However, this similarity was limited to reconstructions that included growth units from original data sets. The modeling of growth dynamics enables the estimation of photosynthesis for the entire yerba mate plant, which is not easily measurable in the field. The InterpolMate software is efficient for building yerba mate mock-ups.
Resumo:
The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.
Resumo:
Purpose: We previously demonstrated efficient retinal rescue of RPE65 mouse models (Rpe65-/- (Bemelmans et al, 2006) and Rpe65R91W/R91W mice) using a HIV1-derived lentiviral vector encoding for the mouse RPE65 cDNA. In order to optimize a lentiviral vector as an alternative tool for RPE65-derived Leber Congenital Amaurosis clinical trials, we evaluated the efficiency of an integration-deficient lentiviral vector (IDLV) encoding the human RPE65 cDNA to restore retinal function in the Rpe65R91W/R91W mice. Methods: An HIV-1-derived lentiviral vector expressing either the hrGFPII or the human Rpe65 cDNA under the control of a 0.8 kb fragment of the human Rpe65 promoter (R0.8) was produced by transient transfection of 293T cells. A LQ-integrase mutant was used to generate the IDLV vectors. IDLV-R0.8-hRPE65 or hrGFPII were injected subretinally into 1 month-old Rpe65R91W/R91W mice. Functional rescue was assessed by ERG (1 and 3 months post-injection) and cone survival by immunohistology. Results: An increased light sensitivity was detected by scotopic ERG in animals injected with IDLV-R0.8-hRPE65 compared to hrGFPII-treated animals or untreated mice. However the improvement was delayed compared to integration-proficient LV and observed at 3 months but not 1 month post-injection. Immunolabelling of cone markers showed an increased number of cones in the transduced area compared to control groups. Conclusions: The IDLV-R0.8-hRPE65 vectors allow retinal improvement in the Rpe65R91W/R91W mice. Both rod function and cone survival were demonstrated even if there is a delay in the rescue as assessed by scotopic ERG. Integration-deficient vectors minimize insertional mutagenesis and thus are safer candidates for human application. Further experiments using large animals are now needed to validate correct gene transfer and expression of the RPE65 gene as well as tolerance of the vector after subretinal injection before envisaging a clinical trial application.
Resumo:
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Resumo:
Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.
Resumo:
At the beginning of the 1990s, the concept of "European integration" could still be said to be fairly unambiguous. Nowadays, it has become plural and complex almost to the point of unintelligibility. This is due, of course, to the internal differentiation of EU membership, with several Member States pulling out of key integrative projects such as establishing an area without frontiers, the "Schengen" area, and a common currency. But this is also due to the differentiated extension of key integrative projects to European non-EU countries - Schengen is again a case in point. Such processes of "integration without membership", the focus of the present publication, are acquiring an ever-growing topicality both in the political arena and in academia. International relations between the EU and its neighbouring countries are crucial for both, and their development through new agreements features prominently on the continent's political agenda. Over and above this aspect, the dissemination of EU values and standards beyond the Union's borders raises a whole host of theoretical and methodological questions, unsettling in some cases traditional conceptions of the autonomy and separation of national legal orders. This publication brings together the papers presented at the Integration without EU Membership workshop held in May 2008 at the EUI (Max Weber Programme and Department of Law). It aims to compare different models and experiences of integration between the EU, on the one hand, and those European countries that do not currently have an accession perspective on the other hand. In delimiting the geographical scope of the inquiry, so as to scale it down to manageable proportions, the guiding principles have been to include both the "Eastern" and "Western" neighbours of the EU, and to examine both structured frameworks of cooperation, such as the European Neighbourhood Policy and the European Economic Area, and bilateral relations developing on a more ad hoc basis. These principles are reflected in the arrangement of the papers, which consider in turn the positions of Ukraine, Russia, Norway, and Switzerland in European integration - current standing, perspectives for evolution, consequences in terms of the EU-ization of their respective legal orders1. These subjects are examined from several perspectives. We had the privilege of receiving contributions from leading practitioners and scholars from the countries concerned, from EU highranking officials, from prominent specialists in EU external relations law, and from young and talented researchers. We wish to thank them all here for their invaluable insights. We are moreover deeply indebted to Marise Cremona (EUI, Law Department, EUI) for her inspiring advice and encouragement, as well as to Ramon Marimon, Karin Tilmans, Lotte Holm, Alyson Price and Susan Garvin (Max Weber Programme, EUI) for their unflinching support throughout this project. A word is perhaps needed on the propriety and usefulness of the research concept embodied in this publication. Does it make sense to compare the integration models and experiences of countries as different as Norway, Russia, Switzerland, and Ukraine? Needless to say, this list of four evokes a staggering diversity of political, social, cultural, and economic conditions, and at least as great a diversity of approaches to European integration. Still, we would argue that such diversity only makes comparisons more meaningful. Indeed, while the particularities and idiosyncratic elements of each "model" of integration are fully displayed in the present volume, common themes and preoccupations run through the pages of every contribution: the difficulty in conceptualizing the finalité and essence of integration, which is evident in the EU today but which is greatly amplified for non-EU countries; the asymmetries and tradeoffs between integration and autonomy that are inherent in any attempt to participate in European integration from outside; the alteration of deeply seated legal concepts, and concepts about the law, that are already observable in the most integrated of the non-EU countries concerned. These issues are not transient or coincidental: they are inextricably bound up with the integration of non-EU countries in the EU project. By publishing this collection, we make no claim to have dealt with them in an exhaustive, still less in a definitive manner. Our ambition is more modest: to highlight the relevance of these themes, to place them more firmly on the scientific agenda, and to provide a stimulating basis for future research and reflection.