995 resultados para 280
Resumo:
In two papers [Proc. SPIE 4471, 272-280 (2001) and Appl. Opt. 43, 2709-2721 (2004)], a logarithmic phase mask was proposed and proved to be effective in extending the depth of field; however, according to our research, this mask is not that perfect because the corresponding defocused modulation transfer function has large oscillations in the low-frequency region, even when the mask is optimized. So, in a previously published paper [Opt. Lett. 33, 1171-1173 (2008)], we proposed an improved logarithmic phase mask by making a small modification. The new mask can not only eliminate the drawbacks to a certain extent but can also be even less sensitive to focus errors according to Fisher information criteria. However, the performance comparison was carried out with the modified mask not being optimized, which was not reasonable. In this manuscript, we optimize the modified logarithmic phase mask first before analyzing its performance and more convincing results have been obtained based on the analysis of several frequently used metrics. (C) 2010 Optical Society of America
Resumo:
日益增强的旅游活动干扰正成为九寨沟世界自然遗产的有效保护与持续管理不可回避的挑战,已成为当前区域生态保护与经济发展的焦点问题之一。阐明相关旅游的干扰活动对核心景区植物物种组成、多样性与结构的影响是九寨沟有效保护与持续管理的必要前提和基础,然而至今少有研究。选择九寨沟与旅游活动相关的九个景点、公路建设地段以及退耕地还林地,详细调查了林下植被结构、物种组成与多样性,比较了相关旅游活动干扰与基本未受干扰地段的差异。目的是阐明九寨沟核心景区旅游干扰条件下植物多样性与群落结构及其特点,揭示旅游干扰与植被结构和生物多样的相互关系,评估九寨沟旅游管理的有效性,探索减免旅游干扰影响的对策与措施。初步结论如下。 1.旅游活动引起九寨沟核心景区植物组成和群落结构特征改变显著。栈道及公路附近许多耐荫喜湿的敏感种局部消失,而早熟禾、车前草、委陵菜等耐干旱、耐践踏、繁殖能力强的植物种群扩大;外来物种频繁出现并已少量侵入干扰相对较轻的林分深处;林下群落以草本植物为优势,灌木与苔藓植物的频度、盖度、高度以及灌木密度均有所下降。可见,大量的游人活动和景区公路建设已对九寨沟丰富的乡土植物构成极大威胁,导致其生物多样性降低。而九寨沟农耕地退耕有利于九寨沟生态环境和生物多样性保护,正逐步向稳定群落演替。 2.干扰强度的差异导致九寨沟植物所受影响的程度不同。栈道附近植物受影响的程度与游人活动频率有关,活动频率高的地段干扰强度大,对植物的影响程度重,反之植物所受的影响较轻。强度干扰地段,耐荫喜湿的物种少见,伴生植物优势地位突出,生物多样性明显降低,植物群落结构特征改变也极为显著;干扰较轻的地段,伴生物种少量出现,植物群落结构变化不明显,生物多样性略为降低,部分地区结构参数值和多样性指数有所升高。公路修建是一种强度干扰,它导致附近植物种类极为单一,草本优势种异常突出,多数植物生活力低下、生长更新能力差。 3.不同植物类群受干扰影响的程度不同。草本及苔藓植物的种类组成和多样性指数受干扰影响较大,灌木和苔藓植物的结构受干扰影响较大,苔藓植物对干扰影响最为敏感。 综合分析表明,九寨沟核心景区的管理虽然比较规范,但目前核心区热点景点段的管理仍然不够,旅游活动驱动了林下植被退化明显、物种组成显著变化、生物多样性衰退、非乡土喜光耐旱种群扩大。导致九寨沟核心区旅游活动与生物多样性保护目标尖锐冲突,进一步约束旅游活动带来的干扰,强化管理,开展林下植被恢复与非乡土喜光耐旱种群调控是九寨沟自然遗产地保护一项紧迫任务。 The increasing tourism disturbance is an unavoidable challenge to effective conservation and sustained tourist management of Jiuzhaigou Nature Reserve. It has become one of the focal problems of regional ecological protect and economic development. It is important to clarify effects of tourism disturbance on plant species composition, diversity and community structure in kernel spot for effective conservation and sustained tourist management in Jiuzhaigou, China. However, there were little studies about this yet. The study investigated the vegetation structure, species composition and diversity at nine sight spot, road area and four abandoned farmlands connecting with tourism, and compared the differences between disturbed area and undisturbed area. The purpose of the this study is clarifying the plant diversity and community structure and characteristics of the disturbed area in kernel spot of Jiuzhaigou, discovering the relation between vegetation structure and biodiversity, evaluating the effect of tourist management and exploring the measure decreasing tourist disturbance. Our results are following: 1. Tourism disturbance caused a significant change in species composition and structure of plant communities in kernel Spot of Jiuzhaigou. In the vicinity of plank and road, some native shade-tolerant or hygrophilous plants had disappeared, accompanying with the population expansion of some xerophilous and disturbance-resisting species such as Poa sp. Plantago depressa, Potentiila multicaulis and some exotic and synanthropic species. Herbs were domaint species, while frequency coverage and height of shrubs and bryophytes, and shrub density decreased. In indicated that tourist activities and build of road had adversely affected on native plant species, and led to decline in biodiversity of Jiuzhaigou Nature Reserve. Abandoned farmlands maybe conduced to entironment and biodiversity conservation. 2. Nearby the plank, influency variable of tourism disturbance on plant was alosely and positively correlated with disturbance intensity. There was companion plant species and lacked shape-loving species in heavy disturbed areas, which caused decrease in biodiversity and significant change in community structure in these places. On the contrary, in the slightly disturbed areas, some companion speices displayed and biodiversity decreased slightly, but no significant change in community structure in these areas. The biuld of road is a heavy disturbance form, which led to increase of herb species and to decrease in vitality and regeneration capacity. 3. The intensity of tourism disturbance on plant depended on plant groups. Tourism interference significantly influenced species composition and diversity index of herb and bryophyte; it also significantly influenced community structure; the bryophyte was more sensitive to tourism disturbance. Our result indicated that the management in kernel spot of Jiuzhaigou is relatively reasonable, but not adequate. Tourism speed the degradation of the vegetation under woodland, the change of the species composition, the decreaing of the biodiversity and the expanding of the exotic sunloving plant populations. The contradiction between tourism and conserving biodiversity is increasing, so enforcing management, regenerating the vegetation under woodland and adjusting the exotic sunloving arid-tolerent plant populations is a pressing work to protect the Jiuzhaigou natural legacy.
Resumo:
近二十多年来,基于对臭氧层衰减、紫外线B(UV-B)增强的担心,研究者希望了解到紫外线辐射对不同作物的影响情况,增强UV-B辐射条件下是否对作物的生长发育、产量质量构成威胁。在本试验中,我们首先探讨了双子叶作物黄瓜(Cucumis sativus)和大豆(Glycine max)对不同紫外波段的生物效应[分别为B-UVA(315-400 nm),N-UVA(315-340 nm),B-UVB(275-400 nm)和N-UVB(290-340 nm),UV-(>400nm)作对照]。我们观察到所有的UV波段处理都使黄瓜和大豆的生长受到抑制,并且细胞受到不同程度的氧化伤害;UV波段处理的作用效果与不同波段的紫外有效生物辐射剂量有关。处理差异在UV-B波段内部和UV-A波段内部同样存在。植物生长UV辐射公式(BSWF)能很好的预测本试验UV-B波段内的平均植物效应,但不能预测UV-A波段的植物效应。短波UV-A的生物作用强于长波UV-A。光合色素的变化与UV波谱差异和种间差异有关。在高的紫外/可见光背景下,UV-A处理同UV-B同样导致光合色素的降低,但黄瓜类胡萝卜素/叶绿素比例升高。与其他研究者的试验结果比较后,我们认为紫外线B辐射的生物效应一致性很高,但紫外线A波段的生物学效应存在较大争议。因此我们在本试验的基础上仅进行荞麦[苦荞(Fagopyrum tataricum Gaertn.)和甜荞(Fagopyrum esculentum Moench.)]对紫外线B波段的响应研究。 我们对苦荞品种-圆籽荞进行了连续两个生长季节的大田半控制试验以观察UV-B辐射对苦荞生长、发育、产量及叶片色素的影响;试验小区进行降低UV-B、近充足UV-B和增强UV-B辐射处理。我们的试验表明在不同强度UV-B辐射下苦荞的生长、地上部生物量积累及最终产量都有所下降,但苦荞的发育加快;当前条件下的日光紫外线B辐射对植物生长和产量也造成负面影响。植物光合色素被日光及增强UV-B辐射降低;UV化合物及卢丁含量在中低剂量的UV-B辐射强度下显著升高,但在高剂量的增强UV-B辐射下短期升高后迅速下降。我们的试验表明苦荞是一个对UV-B高度敏感的作物。苦荞对UV-B的敏感性与UV-B剂量、外界环境因素及生长季节有关。 单个苦荞品种的试验结果使我们认识到外界UV-B辐射已经对苦荞生长发育构成逆境条件,未来全球气候变化条件下增强紫外线B辐射可能使其处于更不利的生长环境中。因此我们有进行了多个种群进行UV-B响应观察并筛选耐性种群。我们对15个苦荞种群进行增强UV-B辐射处理(6.30 kJ m2 UV-BBE,模拟当地25%的臭氧衰减),我们观察苦荞UV-B辐射效应存在显著的种内差异,UV-B辐射对多数种群具有抑制作用,但对一些种群还有刺激作用。我们采用主成分分析方法与作物UV-B响应指数(RI)来评价苦荞作物UV-B辐射耐性。我们发现作物的UV-B耐性不仅与其原产地背景UV-B强度有关,而且与作物相对生长效率、次生代谢产物含量(如卢丁)及其他因素有关。我们观察到苦荞伸展叶总叶绿素变化与UV-B耐性成正相关;室内苦荞幼苗的UV-B辐射致死试验表明:苦荞种群死亡率与其UV-B耐性成负相关。 此外,我们对甜荞的UV-B辐射响应也进行了初步研究。选取美姑甜荞、巧家甜荞和云龙甜荞进行5个梯度的增强UV-B辐射室外模拟试验。我们观察到UV-B辐射显著降低了甜荞的生长、生物量及产量;并严重影响了甜荞的生殖生长,降低了花序数、种子数和结实率;并且UV-B辐射对甜荞的抑制作用存在显著的剂量效应。三种甜荞品种存在显著的种内差异,其中美姑品种UV-B耐性最强,且膜脂受UV-B辐射氧化伤害最小,这与该品种UV-B辐射下较高的GR酶活性、APX酶活性和PPO酶活性、以及含量更高的抗坏血酸有关。甜荞的次生代谢也受到增强UV-B辐射的影响,其香豆酰类化合物在UV-B辐射下升高显著,而槲皮素含量也在高剂量UV-B辐射下有所增加;卢丁含量依赖UV-B辐射剂量而变化,中低剂量UV-B辐射下其卢丁含量逐渐升高,但在高剂量辐射下逐渐下降。 通过对生长在高海拔地区的荞麦作物(苦荞和甜荞)进行的室外研究,我们认识到作物不同品种存在很大的耐性差异,这就为UV-B耐性育种创造了有利条件。进一步加大荞麦种质资源筛选力度并深入认识荞麦抗性机理,在此基础上通过杂交或其他基因融合手段培育抗性品种,对高剂量UV-B辐射地区的荞麦产量的提高将起到重要推动作用,并使荞麦生产能有效应对未来全球气候变化条件下UV-B辐射可能升高的威胁。 During last few decades, due to concern of ozone layer depletion and enhancement of ultraviolet B radiation(UV-B, 280-315 nm), the agronomist want to know the responses of different crop species to UV-B. In the first experiment of our study, the effect of different UV band [B-UVA(315-400 nm), N-UVA(315-340 nm), B-UVB(275-400 nm), N-UVB(290-340 nm)and UV-(>400nm, as control)] on the cucumber(Cucumis sativus)and soybean(Glycine max)were investigated in growth room. Spectra-dependent differences in growth and oxidation indices existed within UV-A bands as well as UV-B bands. The general biological effects of different band were UV- < B-UVA< N-UVA<N-UVB<B-UVB. The plant growth biologically spectra weighting function(BSWF)matched well with average plant response in UV-B region, but not in UV-A region. Shorter UV-A wavelength imposed more negative impact than longer UV-A wavelength did in both species. The effect on photosynthetic pigment was related to different UV bands and different species. The photosynthetic pigment content was decreased by UV-A spectra as well as UV-B spectra. In comparison with the results of previous studies, we found that the wavelength-dependent biological effect of ultraviolet B radiation has high consistency, but the biological effect of ultraviolet-A radiation was inconsistent. We narrow our following study on the effect of ultraviolet B radiation on the buckwheat(tartary buckwheat and common buckwheat). The tartary buckwheat(Fagopyrum tataricum Gaertn.)cultivars Yuanziqiao was grown in the sheltered field plots for two consecutive seasons under reduced, near-ambient and two supplemental levels of UV-B radiation. The crop growth, photosynthetic pigments, total biomass, final seed yield and thousand-grain weight were decreased by near-ambient and enhanced UV-B radiation, while crop development was promoted by enhanced UV-B radiation. Leaf rutin concentration and UV-B absorbing compound was generally increased by UV-B with the exception of 8.50 kJ m-2 day-1 supplemental levels. Our results showed that tartary buckwheat is a potentially UV-B sensitive species. Study on one cultivars showed that ambient solar radiation had present a stress to tartary buckwheat. This makes it necessary to observe the UV-B response of many cultivars and screen tolerant cultivars. Fifteen populations of tartary buckwheat were experienced enhanced UV-B radiation simulating 25% depletion of the stratospheric ozone layer in Kunming region, and plant responses in growth, morphology and productivity were observed. Principal components analysis(PCA)was used to evaluate overall sensitivity of plant response to UV-B as well as response index. The different populations exhibited significant differences in responses to UV-B. The photosynthetic pigments of young seedlings were also affected significantly under field condition. On the other hand, the healthy seedlings of different populations were exposed to the high level of UV-B radiation in growth chambers to determine the plant lethality rate. The plant tolerance evaluated by multivariate analysis was positively related to total plant chlorophyll change, but negatively related to lethality rate. In other hand, the UV-B responses of the other important cultivated buckwheat species, common buckwheat(Fagopyrum esculentum Moench.), were also studied preliminarily. Three widespread cultivated variety(Meigu, Qiaojia and Yunlong cultivars)were provided with five level of enhanced UV-B radiation outdoors. We observed that the crop growth, development and production were significantly decreased, and reproductive production, like anthotaxy number, seed number and seed setting ratio, was also decreased. Dose-dependent inhibition effect caused by enhanced UV-B radiation also existed in common buckwheat. Significant intraspecific difference existed in those three cultivars. The Meigu cultivars with dwarfed growth and lower production have highest UV-B tolerance as well as lowest damage in cell membrane, this could be associated with profound enhancements of glutathione reductase(GR)activity, ascorbate peroxidase activity and polyphenol oxidase activity as well as higher ascorbic acid concentration. The secondary metabolism was also affected by UV-B radiation, with profound elevation of coumarin compound and moderate increase of quercetin concentration. Rutin concentration was peaked in 5kJ m-2 UV-B. The contrasting effect of UV-B radiation on different populations indicated that there existed abundant genetic resources for selecting tolerant populations of common and tartary buckwheat. Much effort needed be pose on screening of buckwheat germplasm and clarification of mechanism of buckwheat tolerance to UV-B. On this base the tolerant cultivars could be bred by hybridization and other gene transfusion method, this would help increase buckwheat yield in high ambient UV-B region and counteract the effect of possible enhanced UV-B radiation in future.
Resumo:
目前,随着全球气候变化的加剧,水分短缺更加明显。在干旱与半干旱地区,水分胁迫是影响植物存活和生长的主要限制因子。同时,随着大气平流层中臭氧浓度的减少,过量的紫外辐射(UV-B)到达地球表面,一些地区的植物不可避免地受到增强UV-B 和水分胁迫的共同作用。文献表明在UV-B 增强的情况下,干旱表现为减弱或增强UV-B 对植物的影响,这与种、品种有一定的相关性。另外,脱落酸(ABA)是近年来研究报道最多的信息调控物质,与植物抗旱性途径有较大的关系,但其对植株抗UV-B 的影响还有待于研究。本论文以滇杨(Populus yunnanensis)为模式植物,从形态和生理方面研究了增强UV-B、干旱和脱落酸对它的影响,并探讨了UV-B 与干旱的互作效应以及喷施脱落酸对植株抗旱性和抗UV-B 能力的影响。主要研究结果如下:1. 增强的UV-B 和干旱胁迫都影响了滇杨的形态生长和生理生化反应。它们都导致了滇杨植株的株高、基茎、整株叶面积、平均叶面积、总生物量和净光合速率的显著降低,使得叶片增厚,过氧化物酶(GPX)活性升高,脯氨酸和花色素苷含量增加,膜脂过氧化程度增大。不同的是干旱显著降低了植株叶片数目,增大了根/冠比(Rs)、细根/总根比(Ft)、提高了内源ABA 含量、碳同位素(δ13C)以及紫外吸收物质含量和超氧化物歧化酶(SOD)的活性,而UV-B 对它们没有影响。干旱与UV-B 的复合作用加剧了任一单独胁迫对植株的抑制,表现为更小的株高、基茎、整株叶面积、平均叶面积、总生物量,更低的光合作用和更高的MDA 含量。而且UV-B 辐射降低了干旱胁迫下生物量分配的可塑性,表现为降低了干旱情况下的Rs 和Ft,ABA 的含量也显著下降,复合胁迫下脯氨酸含量和过氧化氢酶(CAT)的活性比任一单独胁迫时都要低。这些实验结果表明,增强的UV-B 与干旱的复合胁迫加剧了对植株的抑制作用。II2. 干旱情况下同时施加外源ABA 提高了植株的根/冠比、细根/总根比和单位面积叶重,即提高了干旱胁迫下植株对生物量分配的可塑性。而且外源ABA 使干旱胁迫下的长期用水效率、ABA 含量、脯氨酸含量、GPX 活性进一步增加,并有效调节了活性氧代谢的平衡,抑制了受旱植株MDA 的增加。结果表明,外源ABA 的喷施提高了滇杨植株的抗旱性。3. 在增强的UV-B 情况下,外源ABA 加剧了UV-B 对滇杨形态生长的抑制效果,表现为进一步降低了滇杨植株的整株叶面积、平均叶面积、单位面积叶重和总生物量,而且ABA 还降低了UV-B 胁迫下的净光合速率和脯氨酸的含量,增大了MDA 的含量。通过以上的数据我们可以看出,外源ABA 虽然提高了滇杨植株的抗旱性,但却加剧了UV-B 胁迫对植株的抑制作用。Currently, drought is one of the most serious environmental stresses. In arid and semi-aridregions, drought is a major constraint imposed on tree survival and growth. The decrease ofozone layer leads to a significant increase in ultraviolet-B (UV-B, 280-320 nm) radiationreaching the earth surface. In some places, plants suffer both UV-B and water stresssimultaneously. Their combination will increase or decrease the sensitivity of plants to UV-Bstress which lies on the species. On the other hand, abscisic acid (ABA), as a plant homoneand growth regulator, is better for plants resistant to drought stress, but it is uncleared aboutthe relationship between exogenous ABA and supplemental UV-B. In the present study, weemployed Populus yunnanensis Dode as a model species to characterize the growth andecophysiological responses of woody plants to supplemental UV-B, drought and exogenous ABA. The results are as follows:1. Both supplemental UV-B and drought affected the morphological, physiological andbiochemical responses of P. yunnanensis. They decreased the plant height, basal diameter,total leaf area, average leaf area, biomass and photosynthesis, and increased specific leaf mass,the activity of guaiacol peroxidase (GPX), the content of proline, anthocyanins andmalondialdehyde (MDA). However, drought decreased the leaf number and increasedroot/shoot ratio, fine root/total ratio, the activity of superoxide dimutase (SOD) and thecontents of ABA, carbon isotope composition (δ13C), UV-absorbing compounds. Whilesupplemental UV-B had no effects on them. The combination of drought and UV-Baugmented the growth inhibtion acting as further lower plant height and smaller basaldiameter, leaf area, biomass and higher MDA content. And compared with drought stress,root/shoot ratio and fine root/total root ratio decreased under the combination stresses. The photosynthesis, proline content and Catalase (CAT) activity became lower under combinationstresses than that of either stress lonely. According to these results, we suggested that,compared with the effect of stress lonely, the combination of supplemental UV-B and droughtdid not mitigate the harmful effect, but augmented it.2. Under drought conditions, exogenous ABA increased root/shoot ratio, fine root/total rootratio and the specific leaf mass. That was to say exogenous ABA increased plant plasticityunder drought conditions. Also ABA content, proline content, activity of GPX and δ13C wereenhanced further. In addition the enhancement of MDA was restrained. So the resultssuggested that exogenous ABA increased the seedling capacity of resistance to drought.3. Under supplemental UV-B conditions, exogenous ABA augmented the growth restrain ofUV-B to seedlings, which acted as further decreased leaf area, specific leaf mass and biomass.Compared with UV-B stress alone, proline content and photosynthesis were decreased andMDA content was increased under the combination of UV-B and ABA. These resultssuggested that although exogenous ABA increased the seedling capacity of resistance todrought, it augmented the growth restrain of supplemental UV-B to P. yunnanensis.
Resumo:
黄龙世界自然遗产地岷江冷杉林(Abies faxoniana)生境类型多样,群落结构复杂,群落植物种类组成多样性丰富。揭示不同生境的生物多样性及其差异是认识生物多样性格局、形成及维持机制的前提和进行多样性保育的基础。本文采用样方法对黄龙钙化滩生境、阴坡非钙化生境及半阳坡非钙化生境的岷江冷杉原始林植物群落结构及植物多样性进行了研究。结果表明: 黄龙岷江冷杉林具有明显的复层异龄结构,垂直结构明显,乔木、灌木、草本、苔藓层次分明。共发现高等植物386 种,其中维管植物46 科103 属163 种,苔藓植38 科83 属物223 种。各层片结构及物种组成如下: (1)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境分别发现乔木18 种、13种、8 种。乔木层均可分为两个亚层,第一亚层优势种均为岷江冷杉,第二亚层主要为岷江冷杉异龄树或其它大高位芽物种。钙化滩生境第一亚层除优势种岷江冷杉外混生有巴山冷杉(Abies fargesii)、粗枝云杉(Picea asperata)以及阔叶树种白桦(Betula platyphylla)等,第二亚层主要为岷江冷杉异龄树;阴坡非钙化生境第一亚层除优势种岷江冷杉外间有巴山冷杉和白桦,第二亚层物种主要为川滇长尾槭(Acer caudatum var. prattii);半阳坡非钙化生境第一亚层除优势种岷江冷杉外混生有巴山冷杉,第二亚层主要为岷江冷杉异龄树。依乔木层优势种的差异,钙化滩生境及半阳坡非钙化生境为岷江冷杉纯林,阴坡非钙化生境为岷江冷杉-川滇长尾槭混交林。不同生境乔木层郁闭度、乔木密度、树高结构、直径结构均存在差异。 (2)钙化滩生境发现灌木41 种,平均盖度为18.49±1.72(%),平均高度为52.12±4.45(cm),优势种为直穗小檗(Berberis dasystachya);阴坡非钙化生境发现灌木30 种,平均盖度为29.33±2.56 (%),平均高度为119.55±8.01 (cm),优势种为箭竹 (Fargesia spathacea) 、唐古特忍冬(Lonicera tangutica) 和袋花忍冬(Lonicera saccata);半阳坡非钙化生境发现灌木29 种,平均盖度为31.35±1.93 (%),平均高度为107.55±4.24 (cm),优势种为箭竹(Fargesia spathacea)。不同生境灌木层结构和物种组成多样性差异显著,钙化滩生境的灌木盖度、高度总体上较非钙化的坡地生境低, 钙化滩生境灌木以小型叶的落叶灌木为主,沟两侧非钙化的坡地生境上则发育了丰富箭竹。 (3)钙化滩生境发现草本46 种,平均盖度为7.18±0.79 (%),平均高度为5.04±0.26(cm),以山酢浆草(Oxalis griffithii)为优势种;阴坡非钙化生境发现草本物种71 种,平均盖度达29.04±2.31(%),平均高度为9.08±0.52(cm),以钝叶楼梯草(Elatostema obtusum)、山酢浆草为优势种;半阳坡非钙化生境草本物种50 种,平均盖度为以8.79±0.82(%),平均高度为7.67±0.43 (cm),以扇叶铁线蕨(Adiantum flabellulatum)、双花堇菜(Viola biflora)、华中蛾眉蕨(Lunathyrium shennongense)、山酢浆草为优势种。阴坡非钙化生境草本层片发育良好,多样性最为丰富,盖度和物种丰富度均显著高于钙化滩生境和半阳坡非钙化生境。 (4)钙化滩生境发现苔藓物种140 种,平均盖度达84.25±1.30 (%),以仰叶星塔藓(Hylocomiastrum umbratum) 等大型藓类为优势种;阴坡非钙化生境发现苔藓物种115 种,平均盖度为79.29±1.64 (%),以刺叶提灯藓(Mnium spinosum)、大羽藓(Thuidium cymbifolium)、毛尖燕尾藓(Bryhnia trichomitra)等个体较小的物种为优势种;半阳坡非钙化生境发现苔藓物种91 种,平均盖度为60.64±1.93 (%),也以刺叶提灯藓为优势种。 (5)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境的物种数分别为234 种、221 种、175 种。乔木层的Shannon-Wiener 指数分别为0.75 ±0.12、1.87±0.12、1.78±0.07(灌木层,0.44±0.08、1.71± 0.15、2.49±0.06;草本层,0.33±0.13、1.31±0.15 、2.15±0.08; 苔藓层1.30±0.11、2.08±0.04、1.73±0.11,);Pielou 均匀度指数分别为0.45±0.05、0.29±0.06、0.28±0.08(灌木层,0.75±0.03、0.68±0.05、0.52±0.06;草本层,0.68±0.02、0.77±0.02、0.74±0.02;苔藓层,0.40±0.03、0.63±0.02、0.52±0.03);Simpson's 优势度指数分别为0.63±0.06、0.78±0.04、0.83±0.07(灌木层,0.21±0.03、0.28±0.05、0.45±0.06;草本层,0.25±0.02、0.12±0.01、0.17±0.01;苔藓层,0.45±0.04、0.18±0.01、0.31±0.04)。三种生境间乔木层、草本层的Sorenson 群落相似性系数较低, 灌木层、苔藓层的的Sorenson 群落相似性系数较高。 综上所述,黄龙岷江冷杉林的群落结构、植物多样性在三种生境间存在差异性,这将意味着我们在进行黄龙世界自然遗产地的森林经营管理时要较多地关注岷江冷山林群落在不同生境中的差异性。 There were multiplex habitat types, complicated community structure and abundant species composition in the Huanglong World Natural Heritage Site. Uncovering the differences of biodiversity among different habitats was a precondition to understand the distribution, formation and sustaining mechanism of the biodiversity, and the foundation of biodiversity conservation. In the present study, using plenty of quadrants, we investigated the community structure and the biodiversity of the primitive Abies faxoniana forest in different habitats (travertine bottomland, semi-sunny-slope non-calcified habitat and shady-slope non-calcified habitat) in the Huanglong World Natural Heritage Site. The main results are as follows: All the primitive Abies faxoniana forests in the three habitats were uneven-aged with obvious vertical structure including tree layer, shrub layer, herb layer and bryophyte layer. A total of 386 higher plants including 163 vascular plant species (103 generic, 46 families) and 223 bryophyte species (83 generic, 38 families) were investigated. The structure and species composition of each layer are as follows: (1) There were 18, 13 and 8 tree species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. The tree layers in all habitats can be divided into two clear sub-layers. The upper tree layers were dominated by Abies faxoniana, and the lower tree layers were dominated by uneven-aged Abies faxoniana or other phanerophytes species. There were Abies fargesii , Picea asperata and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in travertine bottomland, and the lower tree layers were dominated by uneven-aged Abies faxoniana; There were Abies fargesii and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in shady-slope non-calcified habitat, and the lower tree layers were dominated by Acer caudatum var. prattii; There was Abies fargesii besides the dominated species (Abies faxoniana) in the upper tree layer semi-sunny-slope non-calcified habitat, and the lower tree layers were dominated by uneven-aged Abies faxoniana. According to composition percentage of dominate species in tree layer, both the forest in travertine bottomland and in semi-sunny-slope non-calcified habitat could be ranked as pure forest, and the forest in shady-slope non-calcified habitat could be ranked as mingled forest. There were significant differences in crown density, plant density, height structure and diameter structure among the three habitats. (2) A total of 41 shrub species (average coverage 18.49±1.72%; average height 52.12±4.45 ㎝)were found in travertine bottomland, and the dominate species was Berberis dasystachya; A total of 30 shrub species (average coverage 29.33±2.56 %;average height 119.55±8.01 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Fargesia spathacea, Lonicera tangutica and Lonicera saccata. A total of 29 shrub species (average coverage 31.35±1.93%; average height 107.55±4.24 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Fargesia spathacea. There were significant differences in structure and species diversity of the shrub layers among the three habitats. The coverage and height of shrub had lower value in travertine bottomland than in two non-calcified habitats. Moreover, travertine bottomland was dominated by deciduous shrub species with microphyll and non-calcified habitats developed abundant Fargesia spathacea species. (3) A total of 46 herb species (average coverage 7.18±0.79%;average height 5.04±0.26 ㎝)were found in travertine bottomland, and the dominate species was Oxalis griffithii; A total of 71 herb species (average coverage 29.04±2.31%;average height 9.08±0.52 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Elatostema obtusum and Oxalis griffithii. A total of 50 herb species (average coverage 8.79±0.82%;average height 7.67±0.43 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Adiantum flabellulatum, Viola biflora, Lunathyrium shennongense and Oxalis griffithii. Herb layers developed well in shady-slope non-calcified habitat and had the higher species richness and coverage than travertine bottomland and semi-sunny-slope non-calcified habitat. (4) A total of 140 bryophyte species (average coverage 84.25±1.30%)were found in travertine bottomland, and the dominate species was big bryophyte species such as Hylocomiastrum umbratum and so on; A total of 115 bryophyte species (average coverage 79.29±1.64%)were found in shady-slope non-calcified habitat, and the dominate species was small bryophyte species such as Mnium spinosum, Thuidium cymbifolium, Bryhnia trichomitra and so on. A total of 91 bryophyte species (average coverage 60.64±1.93%) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Mnium spinosum. (5) There were 234, 221 and 175 plant species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. Shannon-Wiener index of the tree layer was 0.75 ±0.12, 1.87±0.12 and 1.78±0.07 (the shrub layer, 0.44±0.08, 1.71± 0.15 and 2.49±0.06; the herb layer, 0.33±0.13, 1.31±0.15 and 2.15±0.08; the bryophyte layer, 1.30±0.11, 2.08±0.04 and 1.73±0.11.) for the three habitats, respectively; Pielou index of the tree layer was 0.45±0.05, 0.29±0.06 and 0.28±0.08 (the shrub layer, 0.75±0.03, 0.68±0.05 and 0.52±0.06; the herb layer, 0.68±0.02, 0.77±0.02 and 0.74±0.02; the bryophyte layer, 0.40±0.03, 0.63±0.02 and 0.52±0.03.) for the three habitats, respectively. Simpson's index of the tree layer was 0.63±0.06, 0.78±0.04 and 0.83±0.07 (the shrub layer, 0.21±0.03、0.28±0.05、0.45±0.06; the herb layer, 0.25±0.02, 0.12±0.01 and 0.17±0.01; the bryophyte layer, 0.45±0.04, 0.18±0.01 and 0.31±0.04.) for the three habitats, respectively. There were low Sorenson index both in the tree layer and in the herb layer among the three habitats, whereas, high Sorenson index occurred both in the shrub layer and in the bryophyte layer. To sum up, there were differences both in community structure and plant diversity among the three different habitats, which means that we should pay more attention to habitats heterogeneities of the primitive Abies faxoniana forest when we take action to manage the forest in the Huanglong World Natural Heritage Site.