981 resultados para 250604 Radiation and Matter
Resumo:
Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner
Resumo:
O uso de malhas ou filmes plásticos de diferente naturezas ou cores pode alterar a qualidade espectral da radiação e, como consequência, o crescimento e a produção de uma cultura vegetal. O objetivo do presente trabalho foi avaliar aspectos do crescimento e da produção de Anthurium andraeanum 'Apalai' sob diferentes malhas de sombreamento. Para tal, mudas micropropagadas foram plantadas em canteiros sob quatro malhas com 70% de sombreamento (azul, vermelha, preta e termo-refletora). O delineamento experimental foi inteiramente casualizado, com quatro tratamentos e quatro repetições de quatro plantas úteis por parcela. As avaliações foram realizadas durante 12 meses, sendo iniciadas após a produção de hastes florais comercializáveis. A malha preta se sobressaiu em relação às demais, proporcionando a melhor condição para crescimento e produção do antúrio, bem como as maiores dimensões da haste floral, que são consideradas atributos de qualidade para flor de corte.
Resumo:
The growth of the coffee fruit is highly dependent on physiological and environmental factors. Environmental factors that most influence the yield of coffee during the critical growth stages are the minimum and maximum temperatures of air, which are affected by solar radiation and depend on the apparent path of the sun. This research work correlated dry mass versus fresh mass, and, fresh and dry mass as function of days after flowering of fruit coffee cv. Obata IAC 1669-20 planted in three different alignments based on the apparent trajectory of the sun, in Jaboticabal, SP. The planting was aligned according to the apparent path of the sun. There were three treatments with four replications, a total of twelve plots, each plot with one hundred plants of coffee, each treatment corresponded to an alignment of planting. The three alignments used showed no differences with respect the average fresh and dry mass. The growth rate of fruit, in fresh weight, was higher in the exponential phase, and in dry mass was higher in the linear stage. The dry weight (DW) can be estimated from the fresh weight (FW) using the model: DW = A1*exp(FW/t1). The sigmoidal model that represents the fruit growth in of coffee plants in fresh and/or dry mass in terms of days after flowering (DAF) was: FW(DW) = A2+[(A1-A2)/(1+exp(DAF-x0)/dx)].
Resumo:
This research analyses the experience of the Alphabetization of Young and Adults Movement named Prof. Paulo Freire (MOVA Belém) in the time period 2001-2004. the study intends to reveal which knowledge/activities are constituent of pedagogical practices of popular alfhabetzers. It also intends to contribute with the registry in the history of alphabetization of young and adults in Belém, without any intention of making general the analyzed aspects. The research is characterized by the use of a qualitative approach of the type ethnographic, because it involves an analysis that considers at the same time the local and global aspects. It analysis documents produced in the period and uses semi-structured interviews for data construction. It tries to show living cues and experiences of the pedagogical activities found in the theoretical references of Brandão (2003), Freire (1979; 1987; 1992), Gadotti (1998; 2000), Ribeiro (1999; 2003), Santos (1995; 2000), Soares (1985; 1998; 2003) and other authors of alphabetization and popular education fields. This multiplicity of bibliographical and empirical references has produced a heterogeneous framework, that is much more complex and multifaceted than the one which would be constituted as the knowledge of the pedagogical, alphabetizer practice. It can not happen, however, an absolute concept that is clear and total that resumes significance and matter of the pedagogical, alphabetization practice of young and adults. So, the study establishes a relativism between them assuming as valid the ones that are of popular and democratic types. At last but not least, it intended to contribute to the history of the alphabetization of youngsters and adults in Belém with a popular education perspective without any pretension to turn the analyzed aspects into generalized ones
Resumo:
O crescimento e desenvolvimento de uma planta dependem da intensidade, qualidade e duração da radiação solar. Por esse fator ser de importância vital às plantas, o presente trabalho objetivou fazer uma avaliação sobre sua variação, bem como sobre a sua disponibilidade no interior do ambiente protegido durante o ciclo do tomateiro nas estações verão-outono em Pelotas, Rio Grande do Sul. O experimento foi conduzido de janeiro a junho de 2003 no Campus da Universidade Federal de Pelotas (latitude 31°52'S; longitude 52°21'W e altitude de 13m), em estufa plástica disposta no sentido Leste-Oeste, com área de 180m². A cultivar utilizada foi Flora-dade, semeada em 24/01/03, transplantada no dia 28/02/03, sendo a última colheita em 12/06/03. Avaliou-se a radiação solar global externa (Rgext) e interna (Rgint), transmitância, radiação fotossinteticamente ativa (RFA) e o albedo da cultura a partir de sensores eletrônicos conectados a um datalloger. Durante o ciclo da cultura, o total de Rgext foi 1161,21MJ m-2, enquanto a Rgint foi 881,85MJ m-2. A Rgint e a RFA apresentaram valores médios diários de 8,5MJ m-2 dia-1 e 3,4MJ m-2 dia-1, respectivamente. A transmitância média da cobertura plástica à radiação solar global foi de 76%. O albedo médio diário da cultura foi 0,23, com albedo de 0,17 nos estádios iniciais, 0,26 no período de máximo crescimento e 0,23 no final do ciclo.
Resumo:
In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern
Resumo:
Objetivou-se, neste trabalho, determinar os balanços de radiação e energia da cultura de alface (Lactuca sativa, L. cv. Verônica) em estufa de polietileno. O experimento foi realizado em uma estufa tipo túnel alto com cobertura de polietileno (100 mim de espessura) e em uma área externa, ambas com 35 m². Durante o ciclo da cultura, foram monitoradas as radiações global e refletida, saldo de radiação, fluxo de calor no solo e temperatura do ar (seca e úmida) nos dois meios. Utilizou-se um Datalogger que operou na freqüência de 1 Hz, armazenando médias de cinco minutos. A partir das integrações diárias das irradiâncias global (K¯) e refletida (K), verificou-se que a transmissividade média da radiação global (K¯in / K¯ex) foi aproximadamente constante, em torno de 79,59%, enquanto a razão das radiações refletidas (Kin / Kex) foi igual a 69,21% com coeficiente de variação de 8,47%. As curvas normalizadas do saldo de radiação de ondas curtas em relação à radiação global (K* / K¯), nos dois meios, mostraram ser aproximadamente constantes no início do ciclo e decrescentes no final. A relação (Rn/ K¯) foi maior no meio externo, em torno de 12%, a partir da fase em que a superfície verde da cultura cobriu o solo. O balanço médio (L*) de radiação de ondas longas foi maior no exterior, em torno de 50%. O balanço de energia, estimado em termos de fluxos verticais, mostrou, em média, que: no exterior, 83,07% do saldo de radiação foi convertido em calor latente (LE), 18,00% em fluxo de calor no solo (G) e 9,96% em calor sensível (H), enquanto que, no interior da estufa, 58,71% do saldo de radiação foi convertido em LE, 42,68% em H e 28,79% em G.
Resumo:
Este trabalho objetivou determinar o albedo (r) no espectro solar e estimar o saldo de radiação, em ambientes cultivados com feijão-vagem (Phaseolus vulgaris L.), em condições de campo e em casa de vegetação com cobertura de polietileno, em Botucatu, SP, (22º 54' S; 48º 27' W; 850 m). A irradiância solar global (Rg) e a radiação solar refletida (Rr) foram utilizadas na determinação do albedo através da razão entre Rr e Rg. Curvas diurnas de r foram traçadas para dias com céu parcialmente nublado e claro, em fases fenológicas da cultura. Os valores do albedo diurno, obtidos através dos totais de radiações, foram utilizados para analisar a variação desse índice durante o ciclo da cultura, nos dois ambientes. O albedo variou com a elevação solar, o ambiente e as fases fenológicas da cultura. A variação de nebulosidade praticamente não influiu sobre o albedo, para totais diurnos. As estimativas do saldo de radiação nas fases vegetativa, reprodutiva e no ciclo da cultura, foram realizadas por meio de regressões lineares simples, tendo como variáveis independentes a irradiância solar global (Rg) e o saldo de radiação de ondas curtas (Rc). Todas as estimativas de radiações apresentaram um melhor ajustamento para fases fenológicas que para o ciclo como um todo. O saldo de radiação (Rn), em condições de campo, ficou bem estimado pela irradiância solar global e o saldo de ondas curtas. O saldo de radiação interno (RnI) à casa de vegetação mostrou-se satisfatoriamente estimado pela irradiância global externa (RgE).
Resumo:
An alternative box-type solar oven constructed from the scrap iron of a gas conventional cook is presented, which functions principles are the effect greenhouse and the concentration. The oven of the conventional cook is the baking enclosure where the absorber (pot) of the solar oven is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven for the concentration of the radiation and a reflecting parabola was introduced in the baking enclosure for the exploitation of the incident reflected radiation in the interior of the oven. The oven is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove in study will be demonstrate The average internal temperature of the absorber was around 150°C and the internal temperature around 120°C. Will demonstrate that its low cost and good thermal performance represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
There are a number of damaging mechanisms that various materials can suffer in service. However, when working with polymer composite materials, this is something that requires analysis, especially when exposed to adverse environmental conditions. Thus, the objective of the present thesis is the study of the direct influence of environmental aging and the form of hybridization of the reinforcement woven on the structural stability, surfacedegradation and fracture process of polymer composites laminates. For this, the development of two polymer composite laminates was necessary, where one of them was reinforced with a bi-directional woven with hybrid strandsofkevlar-49/glass-Efibers, and the other also with a bi-directionalwoven, however with weft and warpformed of alternating strandsof Kevlar-49 fibers and glass-E fiber The reinforcementwoven are industrially manufactured. Both laminates use a polyester resin as a matrixand are made up of four layers each. All laminates were industrially prepared by the hand lay-up method of manufacturing. To do this, test specimens were manufactured of the respective laminates and submitted to environmental aging accelerated through the aging chamber. They were exposed to alternating cycles of UV radiation and moisture (heated steam) for a standard defined period. At the end of the exposure period the specimens were subjected to mechanical tests of uniaxial tensile and bending in three points and to the characterizationsof the fracture and surface deterioration. In addition, they were submitted to a structural degradation assessment by the measurement of mass variation technique (MMVT) and the measurement of thickness variation technique (MTVT), this last technique being developed in this thesis. At the end of the analysis it was observed that the form of hybridization of the reinforcement woven and the aging process directly influence with losses or gain in mechanical properties, with losses in the structural degradation and in the formation and propagation of damage mechanism of the developedcomposite laminates
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
An alternative box-type solar cooker built starting from the scrap of a tire and a scrap of old office chair is presented, which principles functions are the effect greenhouse and the concentration. The tire served as structure for making of is the baking enclosure where the absorber (roasting pan 20x30cm) of the solar is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven/cook for the concentration of the radiation and a reflecting parable was introduced in the baking enclosure for the exploitation of the incident reflected radiation inside of the oven/cook. The oven/cook is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove/cook in study will be demonstrate. The average internal temperature of the absorber was around 152,3°C and the internal temperature around 110°C. Will demonstrate that toits low cost and good thermal performance, represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.
Resumo:
The use of solar energy for water disinfection, and is accessible to disadvantaged communities because of its low cost, has the advantage of using disposable materials such as bottles of polyethylene terephthalate (PET). We present a study that used two methods of disinfection: the methodology proposed by the project Solar Water Disinfection (SODIS), which consisted of water disinfection by solar radiation and temperature and the methodology which the temperature of the water for disinfection. In both, we seek to eliminate microorganisms that cause serious diseases such as dysentery, typhoid, cholera, etc. Water samples were collected in the community of Bass, where the population has low income and the incidence of waterborne diseases is high. The experiments were divided into two stages. In step 1 we studied the feasibility of disinfection and in step 2 the feasibility of the pilot plant to obtain adequate levels of disinfection temperatures desired. The results showed the efficiency of the disinfection process, reaching an average of 80 to 100% death of microorganisms, but regrowth was observed in some samples. Finally on the good results of stage 1, is designed and built and tested in an experimental pilot plant, which has shown to be feasible to promote water disinfection through the use of solar energy. The water after treatment is in accordance with the limits established by Brazilian legislation for clean water, maintaining a positive performance for the disinfection and acceptable levels of bacterial regrowth
Resumo:
Given the growing environmental crisis caused by degradation, mainly due to the use of polluting energy sources, increasing the growing use of renewable energies worldwide, with emphasis on solar energy, an abundant supply and available to everyone, which can be harnessed in several ways: electricity generation; dehydration of food; heating, disinfection and distillation and cooking. The latter has as its primary feature the viability of clean, renewable energy for society, combating ecological damage caused by large-scale use of firewood for cooking foods, use in tropical countries with high solar radiation, and has funding NGOs throughout the world with the goal of achieving low-income population. The proposed project consists of a solar cooker for concentration, working from the reflection of sunlight by a hub that they converge to a focal point at the bottom of the pot, getting lots of heat. The solar cooker under study consists of two elliptical reflecting parabolas made from the recycling of scrap TV antenna, having 0.29 m² of surface area for each antenna, which were covered by multiple mirrors of 2 mm thick and mounted on a metal structure, with correction for the mobility of the apparent movement of the sun. This structure was built with the recycling of scrap metal, possessing a relatively low cost compared with other solar cookers, around US$ 50.00. This cost becomes negligible, since that will involve a great benefit to not have fuel costs for each meal, unlike the use of gas or firewood for cooking food. The tests show that the cooker has reached the maximum temperature of 740 ° C, for boiling water in an average time of 28 minutes, cooking various types of foods such as potatoes, rice and pasta in an average time of 45 minutes and still going as a solar oven, making pizza baking and meat. These cooking times do not differ much from the cooking times on a gas stove, it becomes the solar cooker as a good consumer acceptance, and furthermore not to deliver the same gases that can poison the food as with the wood stove. Proves the viability of using the stove to cook or bake in two daily meals for a family, still presenting a position to improve his performance with the addition of new materials, equipment and techniques