953 resultados para 1128


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We designed FISH-probes for two distinct microsporidian clades and demonstrated their application in detecting respectively Nosema/Vairimorpha and Dictyoceola species. We applied them to study the vertical transmission of two microsporidia infecting the amphipod Gammarus duebeni

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable and sufficiently discriminative methods are needed for differentiating individual strains of Salmonella enterica serotype Enteritidis beyond the phenotypic level; however, a consensus has not been reached as to which molecular method is best suited for this purpose. In addition, data are lacking on the molecular fingerprinting of serotype Enteritidis from poultry environments in the United Kingdom. This study evaluated the combined use of classical methods (phage typing) with three well-established molecular methods (ribotyping, macrorestriction analysis of genomic DNA, and plasmid profiling) in the assessment of diversity within 104 isolates of serotype Enteritidis from eight unaffiliated poultry farms in England. The most sensitive technique for identifying polymorphism was PstI-SphII ribotyping, distinguishing a total of 22 patterns, 10 of which were found among phage type 4 isolates. Pulsed-field gel electrophoresis of XhaI-digested genomic DNA segregated the isolates into only six types with minor differences between them. In addition, 14 plasmid profiles were found among this population. When all of the typing methods were combined, 54 types of strains were differentiated, and most of the poultry farms presented a variety of strains, which suggests that serotype Enteritidis organisms representing different genomic groups are circulating in England. In conclusion, geographical and animal origins of Salmonella serotype Enteritidis isolates may have a considerable influence on selecting the best typing strategy for individual programs, and a single method cannot be relied on for discriminating between strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica serotypes Derby, Mbandaka, Montevideo, Livingstone, and Senftenberg were among the 10 most prevalent serotypes isolated from farm animals in England and Wales in 1999. These serotypes are of potential zoonotic relevance; however, there is currently no "gold standard" fingerprinting method for them. A collection of isolates representing the former serotypes and serotype Gold Coast were analyzed using plasmid profiling, pulsed-field gel electrophoresis (PFGE), and ribotyping. The success of the molecular methods in identifying DNA polymorphisms was different for each serotype. Plasmid profiling was particularly useful for serotype Derby isolates, and it also provided a good level of discrimination for serotype Senftenberg. For most serotypes, we observed a number of nontypeable plasmid-free strains, which represents a limitation of this technique. Fingerprinting of genomic DNA by ribotyping and PFGE produced a significant variation in results, depending on the serotype of the strain. Both PstI/SphI ribotyping and XbaI-PFGE provided a similar degree of strain differentiation for serotype Derby and serotype Senftenberg, only marginally lower than that achieved by plasmid profiling. Ribotyping was less sensitive than PFGE when applied to serotype Mbandaka or serotype Montevideo. Serotype Gold Coast isolates were found to be nontypeable by XbaI-PFGE, and a significant proportion of them were found to be plasmid free. A similar situation applies to a number of serotype Livingstone isolates which were nontypeable by plasmid profiling and/or PFGE. In summary, the serotype of the isolates has a considerable influence in deciding the best typing strategy; a single method cannot be relied upon for discriminating between strains, and a combination of typing methods allows further discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfect ants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of map in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A LightCycler-based PCR-hybridization gyrA mutation assay (GAMA) was developed to rapidly detect gyrA point mutations in multiresistant (MR) Salmonella enterica serotype Typhimurium DT104 with decreased susceptibility to ciprofloxacin (MIC, 0.25 to 1.0 mg/liter). Ninety-two isolates (49 human, 43 animal) were tested with three individual oligonucleotide probes directed against an Asp-87-to-Asn (GAC --> AAC) mutation, an Asp-87-to-Gly (GAC --> GGC) mutation, and a Ser-83-to-Phe (TCC --> TTC) mutation. Strains homologous to the probes could be distinguished from strains that had different mutations by their probe-target melting temperatures. Thirty-seven human and 30 animal isolates had an Asp-87-to-Asn substitution, 6 human and 6 animal isolates had a Ser-83-to-Phe substitution, and 5 human and 2 animal isolates had an Asp-87-to-Gly substitution. The remaining six strains all had mismatches with the three probes and therefore different gyrA mutations. The sequencing of gyrA from these six isolates showed that one human strain and two animal strains had an Asp-87-to-Tyr (GAC --> TAC) substitution and two animal strains had a Ser-83-to-Tyr (TCC --> TAC) substitution. One animal strain had no gyrA mutation, suggesting that this isolate had a different mechanism of resistance. Fifty-eight of the strains tested were indistinguishable by several different typing methods including antibiograms, pulsed-field gel gel electrophoresis, and plasmid profiling, although they could be further subdivided according to gyrA mutation. This study confirmed that MR DT104 with decreased susceptibility to ciprofloxacin from humans and food animals in England and Wales may have arisen independently against a background of clonal spread of MR DT104.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Denaturing high-performance liquid chromatography (DHPLC) was evaluated as a rapid screening and identification method for DNA sequence variation detection in the quinolone resistance-determining region of gyrA from Salmonella serovars. A total of 203 isolates of Salmonella were screened using this method. DHPLC analysis of 14 isolates representing each type of novel or multiple mutations and the wild type were compared with LightCycler-based PCR-gyrA hybridization mutation assay (GAMA) and single-strand conformational polymorphism (SSCP) analyses. The 14 isolates gave seven different SSCP patterns, and LightCycler detected four different mutations. DHPLC detected 11 DNA sequence variants at eight different codons, including those detected by LightCycler or SSCP. One of these mutations was silent. Five isolates contained multiple mutations, and four of these could be distinguished from the composite sequence variants by their DHPLC profile. Seven novel mutations were identified at five different loci not previously described in quinolone-resistant salmonella. DHPLC analysis proved advantageous for the detection of novel and multiple mutations. DHPLC also provides a rapid, high-throughput alternative to LightCycler and SSCP for screening frequently occurring mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli 086:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli 086:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type I and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Escherichia coli O26 serogroup includes important food-borne pathogens associated with human and animal diarrheal disease. Current typing methods have revealed great genetic heterogeneity within the O26 group; the data are often inconsistent and focus only on verotoxin (VT)-positive O26 isolates. To improve current understanding of diversity within this serogroup, the genomic relatedness of VT-positive and -negative O26 strains was assessed by comparative genomic indexing. Our results clearly demonstrate that irrespective of virulence characteristics and pathotype designation, the O26 strains show greater genomic similarity to each other than to any other strain included in this study. Our data suggest that enteropathogenic and VT-expressing E. coli O26 strains represent the same clonal lineage and that W-expressing E. coli O26 strains have gained additional virulence characteristics. Using this approach, we established the core genes which are central to the E. coli species and identified regions of variation from the E. coli K-12 chromosomal backbone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type III secretion systems of enteric bacteria enable translocation of effector proteins into host cells. Secreted proteins of verotoxigenic Escherichia coli O157 strains include components of a translocation apparatus, EspA, -B, and -D, as well as "effectors" such as the translocated intimin receptor (Tir) and the mitochondrion-associated protein (Map). This research has investigated the regulation of LEE4 translocon proteins, in particular EspA. EspA filaments could not be detected on the bacterial cell surface when E. coli O157:H7 was cultured in M9 minimal medium but were expressed from only a proportion of the bacterial population when cultured in minimal essential medium modified with 25 mM HEPES. The highest proportions of EspA-filamented bacteria were detected in late exponential phase, after which filaments were lost rapidly from the bacterial cell surface. Our previous research had shown that human and bovine E. coli O157:H7 strains exhibit marked differences in EspD secretion levels. Here it is demonstrated that the proportion of the bacterial population expressing EspA filaments was associated with the level of EspD secretion. The ability of individual bacteria to express EspA filaments was not controlled at the level of LEE1-4 operon transcription, as demonstrated by using both beta-galactosidase and green fluorescent protein (GFP) promoter fusions. All bacteria, whether expressing EspA filaments or not, showed equivalent levels of GFP expression when LEEI-4 translational fusions were used. Despite this, the LEE4-espADB mRNA was more abundant from populations with a high proportion of nonsecreting bacteria (low secretors) than from populations with a high proportion of secreting and therefore filamented bacteria (high secretors). This research demonstrates that while specific environmental conditions are required to induce LEEI-4 expression, a further checkpoint exists before EspA filaments are produced on the bacterial surface and secretion of effector proteins occurs. This checkpoint in E. coli O157:H7 translocon expression is controlled by a posttranscriptional mechanism acting on LEE4-espADB mRNA. The heterogeneity in EspA filamentation could arise from phase-variable expression of regulators that control this posttranscriptional mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Len. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CpxAR (Cpx) two-component regulator controls the expression of genes in response to a variety of environmental cues. The Cpx regulator has been implicated in the virulence of several gram-negative pathogens, although a role for Cpx in vivo has not been demonstrated directly. Here we investigate whether positive or negative control of gene expression by Cpx is important for the pathogenesis of Salmonella enterica serotype Typhimurium. The Cpx signal pathway in serotype Typhimurium was disrupted by insertional inactivation of the cpxA and cpxR genes. We also constitutively activated the Cpx pathway by making an internal in-frame deletion in cpxA (a cpxA* mutation). Activation of the Cpx pathway inhibited induction of the envelope stress response pathway controlled by the alternative sigma factor sigma(E) (encoded by rpoE). Conversely, the Cpx pathway was highly up-regulated (>40-fold) in a serotype Typhimurium rpoE mutant. The cpxA* mutation, but not the cpxA or the cpxR mutation, significantly reduced the capacity of serotype Typhimurium to adhere to and invade eucaryotic cells, although intracellular replication was not affected. The cpxA and cpxA* mutations significantly impaired the ability of serotype Typhimurium to grow in vivo in mice. To our knowledge, this is the first demonstration that the Cpx system is important for a bacterial pathogen in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intimin, Tir, and EspA proteins are expressed by attaching-effacing Escherichia coli, which include enteropathogenic and enterohemorrhagic E. coli pathotypes. EspA proteins are part of the type three secretion system needle complex that delivers Tir to the host epithelial cell, while surface arrayed intimin docks the bacterium to the translocated Tir. This intimate attachment leads to attaching and effacing lesions. Recombinant forms of these effector proteins from enterohemorrhagic E. coli O157:H7 were produced by using E. coli expression vectors. Binding of intimin and Tir fragments in enzyme-linked immunosorbent assay (ELISAs) demonstrated the interaction of intimin fragments containing the C-terminal 282 or 188 amino acids to a Tir fragment containing amino acid residues 258 to 361. Recombinant intimin and EspA proteins were used to elicit immune responses in rabbits and immune phage-display antibody libraries were produced. Screening of these immune libraries by conventional phage-antibody panning and colony filter screening produced a panel of antibodies with specificity for EspA or intimin. Antibodies recognizing different C-terminal epitopes on intimin bound specifically to the gamma intimin of O157:H7 and not to other classes of intimin. Antibodies recognizing EspA from E. coli O157 also recognized the protein from the eae-deficient O157 mutant DM3 and from E. coli O111. Anti-intimin antibodies were also produced as fusion proteins coupled to the reporter molecule alkaline phosphatase, allowing the one-step detection of gamma intimin. The isolated recombinant monoclonal antibodies were functional in a range of assay formats, including ELISA, Western blotting, and dot blots, thus demonstrating their diagnostic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S. enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.