869 resultados para 010201 Approximation Theory and Asymptotic Methods
Resumo:
This work deals with the car sequencing (CS) problem, a combinatorial optimization problem for sequencing mixed-model assembly lines. The aim is to find a production sequence for different variants of a common base product, such that work overload of the respective line operators is avoided or minimized. The variants are distinguished by certain options (e.g., sun roof yes/no) and, therefore, require different processing times at the stations of the line. CS introduces a so-called sequencing rule H:N for each option, which restricts the occurrence of this option to at most H in any N consecutive variants. It seeks for a sequence that leads to no or a minimum number of sequencing rule violations. In this work, CS’ suitability for workload-oriented sequencing is analyzed. Therefore, its solution quality is compared in experiments to the related mixed-model sequencing problem. A new sequencing rule generation approach as well as a new lower bound for the problem are presented. Different exact and heuristic solution methods for CS are developed and their efficiency is shown in experiments. Furthermore, CS is adjusted and applied to a resequencing problem with pull-off tables.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.
Resumo:
Questa tesi si pone l'obiettivo di presentare la teoria dei giochi, in particolare di quelli cooperativi, insieme alla teoria delle decisioni, inquadrandole formalmente in termini di matematica discreta. Si tratta di due campi dove l'indagine si origina idealmente da questioni applicative, e dove tuttavia sono sorti e sorgono problemi più tipicamente teorici che hanno interessato e interessano gli ambienti matematico e informatico. Anche se i contributi iniziali sono stati spesso formulati in ambito continuo e utilizzando strumenti tipici di teoria della misura, tuttavia oggi la scelta di modelli e metodi discreti appare la più idonea. L'idea generale è quindi quella di guardare fin da subito al complesso dei modelli e dei risultati che si intendono presentare attraverso la lente della teoria dei reticoli. Ciò consente di avere una visione globale più nitida e di riuscire agilmente ad intrecciare il discorso considerando congiuntamente la teoria dei giochi e quella delle decisioni. Quindi, dopo avere introdotto gli strumenti necessari, si considerano modelli e problemi con il fine preciso di analizzare dapprima risultati storici e solidi, proseguendo poi verso situazioni più recenti, più complesse e nelle quali i risultati raggiunti possono suscitare perplessità. Da ultimo, vengono presentate alcune questioni aperte ed associati spunti per la ricerca.
Resumo:
General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.
Resumo:
Objective: Significant others are central to patients' experience and management of their cancer illness. Building on our validation of the Distress Thermometer (DT) for family members, this investigation examines individual and collective distress in a sample of cancer patients and their matched partners, accounting for the aspects of gender and role. Method: Questionnaires including the DT were completed by a heterogeneous sample of 224 couples taking part in a multisite study. Results: Our investigation showed that male patients (34.2%), female patients (31.9%), and male partners (29.1%) exhibited very similar levels of distress, while female partners (50.5%) exhibited much higher levels of distress according to the DT. At the dyad level just over half the total sample contained at least one individual reporting significant levels of distress. Among dyads with at least one distressed person, the proportion of dyads where both individuals reported distress was greatest (23.6%). Gender and role analyses revealed that males and females were not equally distributed among the four categories of dyads (i.e. dyads with no distress; dyads where solely the patient or dyads where solely the partner is distressed; dyads where both are distressed). Conclusion: A remarkable number of dyads reported distress in one or both partners. Diverse patterns of distress within dyads suggest varying risks of psychosocial strain. Screening patients' partners in addition to patients themselves may enable earlier identification of risk settings. The support offered to either member of such dyads should account for their role- and gender-specific needs. Copyright © 2010 John Wiley ; Sons, Ltd.
Resumo:
Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.