970 resultados para year-round


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three species of Australian endemic catsharks (grey spotted catshark Asymbolus analis, orange spotted catshark A. rubiginosus and Australian sawtail shark Figaro boardmani) were collected from the trawl grounds of a highly seasonal commercial fishery off southern Queensland, Australia. Specimens were collected on the mid to outer continental shelf at depths between 78 and 168 m. This study provides the first information on the reproductive biology of these three poorly-known species. Mature female and male A. analis were observed from 455 mm total length (TL), mature female A. rubiginosus from 410 mm TL, mature male A. rubiginosus from 405 mm TL, mature female F. boardmani from 402 mm TL and mature male F. boardmani from 398 mm TL (although a lack of immature specimens precluded more accurate assessments of size at maturity). The reproductive mode of all species was confirmed as single oviparous (carrying only one egg case in each uterus at a time). Ovarian fecundity (the number of vitellogenic follicles) ranged from 7-20 in A. analis, 5-23 in A. rubiginosus and 9-13 in F. boardmani. Several indicators suggest that Asymbolus catsharks off southern Queensland are reproductively active year-round. The proportion of female A. rubiginosus carrying egg cases was highest in spring (60%), intermediate in autumn (50%) and lowest in winter (44%).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Suitable long term species-specific catch rate and biological data are seldom available for large shark species, particularly where historical commercial logbook reporting has been poor. However, shark control programs can provide suitable data from gear that consistently fishes nearshore waters all year round. We present an analysis of the distribution of 4757 . Galeocerdo cuvier caught in surface nets and on drumlines across 9 of the 10 locations of the Queensland Shark Control Program (QSCP) between 1993 and 2010. Standardised catch rates showed a significant decline (p<. 0.0001) in southern Queensland locations for both gear types, which contrasts with studies at other locations where increases in tiger shark catch per unit effort (CPUE) have been reported. Significant temporal declines in the average size of tiger sharks occurred at four of the nine locations analysed (p<. 0.05), which may be indicative of fishing reducing abundance in these areas. Given the long term nature of shark control programs along the Australian east coast, effects on local abundance should have been evident many years ago, which suggests that factors other than the effects of shark control programs have also contributed to the decline. While reductions in catch rate are consistent with a decline in tiger shark abundance, this interpretation should be made with caution, as the inter-annual CPUE varies considerably at most locations. Nevertheless, the overall downward trend, particularly in southern Queensland, indicates that current fishing pressures on the species may be unsustainable. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Finland has moved from growing vegetables by natural light to year-round greenhouse production using artificial lighting. Determination of sensory effects on greenhouse-grown vegetables is important as sensory evaluation provides information which chemical methods can not. It can tell us about the quality of samples which affects the consumers' behaviour. There are different opinions on how the quality of vegetables should be determined. The consumers are dissatisfied with the quality of vegetables and fruits, although the variety of products is larger than ever. The aim of this study was to find out how artificial lighting contributes to the sensory quality of greenhouse tomatoes and cucumbers compared to traditional natural lighting, and how storage affects the sensory attributes of the samples. In this study there were two sets of tomatoes and two sets of cucumbers, representing two different harvest seasons. Sensory evaluation involved two steps. The first step was to sort the samples and the second step was to generate a profile using descriptive analysis. Sorting was found to give some approximate information on differences between tomato and cucumber samples. MDS-maps dimensions were presented by age and lighting technique. The reliability of sorting results was quite good. The quality of the natural products was inconsistent. Production technology had more of an effect on cucumber samples than tomato samples. Natural light cucumbers were, for example sweeter and softer than artificial light cucumbers. Age had an especially large effect on cucumber appearance characteristics. There were less differences between tomato samples than cucumber samples. Production technology had less of an effect on tomato samples than age, e.g. hardness decreased during storage. In this study, it was found that artificial lighting has little effect on the sensory quality of Finnish greenhouse tomatoes compared with tomatoes grown under natural light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glyphosate resistance is a rapidly developing threat to profitability in Australian cotton farming. Resistance causes an immediate reduction in the effectiveness of in-crop weed control in glyphosate-resistant transgenic cotton and summer fallows. Although strategies for delaying glyphosate resistance and those for managing resistant populations are qualitatively similar, the longer resistance can be delayed, the longer cotton growers will have choice over which tactics to apply and when to apply them. Effective strategies to avoid, delay, and manage resistance are thus of substantial value. We used a model of glyphosate resistance dynamics to perform simulations of resistance evolution in Sonchus oleraceus (common sowthistle) and Echinochloa colona (awnless barnyard grass) under a range of resistance prevention, delaying, and management strategies. From these simulations, we identified several elements that could contribute to effective glyphosate resistance prevention and management strategies. (i) Controlling glyphosate survivors is the most robust approach to delaying or preventing resistance. High-efficacy, high-frequency survivor control almost doubled the useful lifespan of glyphosate from 13 to 25 years even with glyphosate alone used in summer fallows. (ii) Two non-glyphosate tactics in-crop plus two in-summer fallows is the minimum intervention required for long-term delays in resistance evolution. (iii) Pre-emergence herbicides are important, but should be backed up with non-glyphosate knockdowns and strategic tillage; replacing a late-season, pre-emergence herbicide with inter-row tillage was predicted to delay glyphosate resistance by 4 years in awnless barnyard grass. (iv) Weed species' ecological characteristics, particularly seed bank dynamics, have an impact on the effectiveness of resistance strategies; S. oleraceus, because of its propensity to emerge year-round, was less exposed to selection with glyphosate than E. colona, resulting in an extra 5 years of glyphosate usefulness (18 v. 13 years) even in the most rapid cases of resistance evolution. Delaying tactics are thus available that can provide some or many years of continued glyphosate efficacy. If glyphosate-resistant cotton cropping is to remain profitable in Australian farming systems in the long-term, however, growers must adapt to the probability that they will have to deal with summer weeds that are no longer susceptible to glyphosate. Robust resistance management systems will need to include a diversity of weed control options, used appropriately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round. Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2 m2/head during hot conditions (24-h average temperatures greater than 33 °C, or a diurnal range of around 29–37 °C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6 m2/head under milder conditions. A feed-bunk length of ≥5 cm/head is needed, as 2 cm/head showed significantly poorer animal performance. When feeding at 90 ad libitum 10 cm/head was optimal, however under a maintenance feeding regime (1 kg/head/day) 5 cm/head was adequate. A minimum water trough allowance of 1 cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions. Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare. Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June–August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5 cm/head on a maintenance-feeding program and 10 cm/head for 90 ad libitum feeding, and the space allowance per animal should be ≥1.2 m2/head. Water trough allocation should be at least 1 cm/head with provision for more in the summer when water intake potentially doubles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round. Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2 m2/head during hot conditions (24-h average temperatures greater than 33 °C, or a diurnal range of around 29–37 °C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6 m2/head under milder conditions. A feed-bunk length of ≥5 cm/head is needed, as 2 cm/head showed significantly poorer animal performance. When feeding at 90% ad libitum 10 cm/head was optimal, however under a maintenance feeding regime (1 kg/head/day) 5 cm/head was adequate. A minimum water trough allowance of 1 cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions. Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare. Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June–August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5 cm/head on a maintenance-feeding program and 10 cm/head for 90% ad libitum feeding, and the space allowance per animal should be ≥1.2 m2/head. Water trough allocation should be at least 1 cm/head with provision for more in the summer when water intake potentially doubles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urban heat island phenomenon is the most well-known all-year-round urban climate phenomenon. It occurs in summer during the daytime due to the short-wave radiation from the sun and in wintertime, through anthropogenic heat production. In summertime, the properties of the fabric of city buildings determine how much energy is stored, conducted and transmitted through the material. During night-time, when there is no incoming short-wave radiation, all fabrics of the city release the energy in form of heat back to the urban atmosphere. In wintertime anthropogenic heating of buildings and traffic deliver energy into the urban atmosphere. The initial focus of Helsinki urban heat island was on the description of the intensity of the urban heat island (Fogelberg 1973, Alestalo 1975). In this project our goal was to carry out as many measurements as possible over a large area of Helsinki to give a long term estimate of the Helsinki urban heat island. Helsinki is a city with 550 000 inhabitants and located on the north shore of Finnish Bay of the Baltic Sea. Initially, comparison studies against long-term weather station records showed that our regular, but weekly, sampling of observations adequately describe the Helsinki urban heat island. The project covered an entire seasonal cycle over the 12 months from July 2009 to June 2010. The measurements were conducted using a moving platform following microclimatological traditions. Tuesday was selected as the measuring day because it was the only weekday during the one year time span without any public holidays. Once a week, two set of measurements, in total 104, were conducted in the heterogeneous temperature conditions of Helsinki city centre. In the more homogeneous suburban areas, one set of measurements was taken every second week, to give a total of 52.The first set of measurements took place before noon, and the second 12 hours, just prior to midnight. Helsinki Kaisaniemi weather station was chosen as the reference station. This weather station is located in a large park in the city centre of Helsinki. Along the measurement route, 336 fixed points were established, and the monthly air temperature differences to Kaisaniemi were calculated to produce monthly and annual maps. The monthly air temperature differences were interpolated 21.1 km by 18.1 km horizontal grid with 100 metre resolution residual kriging method. The following independent variables for the kriging interpolation method were used: topographical height, portion of sea area, portion of trees, fraction of built-up and not built-up area, volumes of buildings, and population density. The annual mean air temperature difference gives the best representation of the Helsinki urban heat island effect- Due to natural variability of weather conditions during the measurement campaign care must be taken when interpretation the results for the monthly values. The main results of this urban heat island research project are: a) The city centre of Helsinki is warmer than its surroundings, both on a monthly main basis, and for the annual mean, however, there are only a few grid points, 46 out of 38 191, which display a temperature difference of more than 1K. b) If the monthly spatial variation is air temperature differences is small, then usually the temperature difference between the city and the surroundings is also small. c) Isolated large buildings and suburban centres create their own individual heat island. d) The topographical influence on air temperature can generally be neglected for the monthly mean, but can be strong under certain weather conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most ecosystems have multiple predator species that not only compete for shared prey, but also pose direct threats to each other. These intraguild interactions are key drivers of carnivore community structure, with ecosystem-wide cascading effects. Yet, behavioral mechanisms for coexistence of multiple carnivore species remain poorly understood. The challenges of studying large, free-ranging carnivores have resulted in mainly coarse-scale examination of behavioral strategies without information about all interacting competitors. We overcame some of these challenges by examining the concurrent fine-scale movement decisions of almost all individuals of four large mammalian carnivore species in a closed terrestrial system. We found that the intensity of intraguild interactions did not follow a simple hierarchical allometric pattern, because spatial and behavioral tactics of subordinate species changed with threat and resource levels across seasons. Lions (Panthera leo) were generally unrestricted and anchored themselves in areas rich in not only their principal prey, but also, during periods of resource limitation (dry season), rich in the main prey for other carnivores. Because of this, the greatest cost (potential intraguild predation) for subordinate carnivores was spatially coupled with the highest potential benefit of resource acquisition (prey-rich areas), especially in the dry season. Leopard (P. pardus) and cheetah (Acinonyx jubatus) overlapped with the home range of lions but minimized their risk using fine-scaled avoidance behaviors and restricted resource acquisition tactics. The cost of intraguild competition was most apparent for cheetahs, especially during the wet season, as areas with energetically rewarding large prey (wildebeest) were avoided when they overlapped highly with the activity areas of lions. Contrary to expectation, the smallest species (African wild dog, Lycaon pictus) did not avoid only lions, but also used multiple tactics to minimize encountering all other competitors. Intraguild competition thus forced wild dogs into areas with the lowest resource availability year round. Coexistence of multiple carnivore species has typically been explained by dietary niche separation, but our multi-scaled movement results suggest that differences in resource acquisition may instead be a consequence of avoiding intraguild competition. We generate a more realistic representation of hierarchical behavioral interactions that may ultimately drive spatially explicit trophic structures of multi-predator communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (2km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement mobile facility as part of the Regional Aerosol Warming Experiment-Ganges Valley Aerosol Experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations, and total condensation nuclei concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturation of 0.46) was higher during the periods of high aerosol absorption (single scattering albedo (SSA)<0.80) than during the periods of high aerosol scattering (SSA>0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (>0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sampling sites were located at: 1) a coastal area on Buenos Aires harbour where high concentrations of "sábalo" occur year round and which on account of its importance merits a specific program itself; 2) a coastal fringe from Buenos Aires harbour to Quilmes (34° 10' - 58° 10') and 3) different stations within the inner zone of the river, which were covered through a tagging campaign performed as part of an agreement among INIDEP-Argentina, CARP-Argentina, Uruguay, INAPE-Uruguay. At present (Winter 1989) recaptures from the first seven species have been obtained, with a total recovery of 3.81 o/o the highest percentages corresponding to patí, boga, armado and sábalo. (Document contains 25 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hygrophila ( Hygrophila polysperma (Roxb.) T. Anderson) is a plants which forms serious aquatic weed problems. Both submerged and emergent growth forms occur. Nutritional studies with a controlled release fertilizer and sediments collected from hygrophila-infested areas were conducted with the emergent growth habit to provide insights into growth of this introduced plant. Plant dry weights for experimental 16- week culture periods with low average temperatures were associated with low amounts of hygrophila biomass as compared to culture periods with high average temperatures. Hygrophila cultured in sand rooting media with the controlled release fertilizer produced as much as 20 times more dry weight than plants cultured in sediments only. First-degree linear regression statistics showed hygrophila dry weights were highly related to ammonia nitrogen, magnesium, sodium, and pH values in the sediments. These findings show the close relationship of the emergent growth habit of hygrophila to sediment nutrients. Analyses for certain sediment characteristics may provide an indication of the potential growth that may be expected for weed infestations of this plant. Hygrophila grows year round in south Florida; however, visual observations of canals and other bodies of water indicate that lower amounts of hygrophila plants occur during the cooler months of year than during the summer season. These findings show the seasonal growth of emergent hygrophila occurs with biomass dependent on both sediment nutrients and temperature.