884 resultados para x-ray photoelectron spectroscopy
Resumo:
The selective oxidation of crotyl alcohol to crotonaldehyde over ultrathin Au overlayers on Pd(1 1 1) and Au/Pd(1 1 1) surface alloys has been investigated by time-resolved X-ray photoelectron spectroscopy (XPS) and mass spectrometry. Pure gold is catalytically inert towards crotyl alcohol which undergoes reversible adsorption. In contrast, thermal processing of a 3.9 monolayer (ML) gold overlayer allows access to a range of AuPd surface alloy compositions, which are extremely selective towards crotonaldehyde production, and greatly reduce the extent of hydrocarbon decomposition and eventual carbon laydown compared with base Pd(1 1 1). XPS and CO titrations suggest that palladium-rich surface alloys offer the optimal balance between alcohol oxidative dehydrogenation activity while minimising competitive decomposition pathways, and that Pd monomers are not the active surface ensemble for such selox chemistry over AuPd alloys. Crown Copyright © 2008.
Resumo:
Mercury scrubbing from gas streams using a supported 1-butyl-3-methylimidazolium chlorocuprate(II) ionic liquid ([C4mim]2[Cu2Cl6]) has been studied using operando EXAFS. Initial oxidative capture as [HgCl3]– anions was confirmed, this was then followed by the unanticipated generation of mercury(I) chloride through comproportionation with additional mercury from the gas stream. Combining these two mechanisms leads to net one electron oxidative extraction of mercury from the gas with increased potential capacity and efficiency for supported ionic liquid mercury scrubbers.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Nanocrystalline samples of Ba1-xCaxF2 prepared by high-energy milling show an unusually high F-ion conductivity, which exhibit a maximum in the magnitude and a minimum in the activation energy at x = 0.5. Here, we report an X-ray absorption spectroscopy (XAS) at the Ca and Sr K edges and the Ba L-3 edge and a molecular dynamics (MD) simulation study of the pure and mixed fluorides. The XAS measurements on the pure binary fluorides, CaF2, SrF2 and BaF2 show that high-energy ball-milling produces very little amorphous material, in contrast to the results for ball milled oxides. XAS measurements of Ba1-xCaxF2 reveal that for 0 < x < 1 there is considerable disorder in the local environments of the cations which is highest for x = 0.5. Hence the maximum in the conductivity corresponds to the composition with the maximum level of local disorder. The MD calculations also show a highly disordered structure consistent with the XAS results and similarly showing maximum disorder at x = 0.5.
Resumo:
The thesis is dedicated to the implementation of advanced x-ray-based techniques for the investigation of the battery systems, more predominantly, the cathode materials. The implemented characterisation methods include synchrotron based x-ray absorption spectroscopy, powder x-ray diffraction, 2-dimensional x-ray fluorescence, full field transmission soft x-ray microscopy, and laboratory x-ray photoelectron spectroscopy. The research highlights the different areas of expertise for each described method, in terms of material characterisation, exploring their complementarities and intersections. The results are focused over manganese hexacyanoferrate and partially Ni substituted manganese hexacyanoferrate, through both organic and aqueous battery systems. In aqueous system, the modification of cathode composition has been observed with various techniques, indicating to the processes occurring in bulk, surface, locally or in long-range, including with the speciation by 2-dimensional scanning, and the time-resolution, by the implementation of the operando measurements. In organic media, the inhomogenisation of the cathode material during the aging process was investigated by the development of the special image treatment procedure for the maps, obtained from the transmission soft x-ray microscopy. It worth mentioning, that apart from the combination of the outcomes from the various x-ray measurements, the exploration of the new capabilities was also conducted, namely, probing the oxidation state of the element with the synchrotron-based 2-dimensional x-ray fluorescence technique, which, generally, with conventional set up, is not possible to achieve. The results and methodology from this thesis can, of course, be generalised on the characterisation of the other battery systems, and not only, as the x-ray techniques are one of the most informative and sophisticated methods for advanced structural investigation of the materials.
Resumo:
In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum ‘Quinta das Cruzes’ in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones.
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.
Resumo:
A espectroscopia de fotoelectrões de raios-X (XPS - X-ray Photoelectron Spectroscopy)é uma das técnicas de análise de superfícies mais importantes e mais usadas em diversasáreas científico-tecnológicas e industriais. Com ela é possível determinar quantitativa equalitativamente a composição elementar e a composição química aproximada, respectivamente,e estrutura electrónica dos elementos presentes para diferentes tipos de materiais. O laboratório de ciência de superfícies do Departamento de Física da FCT-UNL encontra-se equipado com um sistema de ultra-alto vácuo Kratos XSAM 800 contendo a instrumentação necessária para se realizar XPS. No entanto, o equipamento precisava de uma requalificação. O controlo e aquisição de dados do espectrómetro era feito por um computador PDP11 de 16-bits que actualmente não é comercializado e não tem qualquer suporte técnico por parte do fabricante. Foi substituído por um computador moderno e por uma placa genérica de aquisição de dados. Para que a análise quantitativa pela técnica de XPS seja precisa, é necesssário fazer a caracterização do sistema. Isso implica o conhecimento de parâmetros como a função de transmissão do espectrómetro e a linearidade da resposta do sistema de detecção. Foi feito um estudo da linearidade da resposta do sistema de detecção e determinou-se experimentalmente a função de transmissão do espectrómetro. Os resultados obtidos para a função de transmissão mostraram estar qualitativamente de acordo com os resultados obtidos por outros na literatura. A transmissão da coluna óptica do analisador de energia de electrões foi posteriormente submetida a um processo de optimização, através da implementação de um algoritmo evolutivo diferencial para optimização de funções, recorrendo a linguagem de programação gráfica LabVIEWTM.
Resumo:
The dielectric functions of InP, In0.53Ga0.47As, and In0.75Ga0.25As0.5P0.5 epitaxial layers have been measured using a polarization modulation spectroscopic ellipsometer in the 1.5 to 5.3 eV region. The oxide removal procedure has been carefully checked by comparing spectroscopic ellipsometry and x ray photoelectron spectroscopy measurements. These reference data have been used to investigate the structural nature of metalorganic chemical vapor deposition grown In0.53Ga0.47As/InP and In0.75Ga0.25As0.5P0.5/InP heterojunctions, currently used for photodiodes and laser diodes. The sharpness of the interfaces has been systematically compared for the two types of heterojunctions: In1 xGaxAsy/InP and InP/In1 xGaxAsyP1 y. The sharpest interface is obtained for InP growth on In0.75Ga0.25As0.5P0.5 where the interface region is estimated to be (10±10) Å thick. The importance of performing in situ SE measurements is emphasized.
Resumo:
Chloride poisoning is known as having an inhibitor effect in the activity of metal catalysis. In this work in situ infrared spectroscopy (FTIR) of adsorbed carbon monoxide and x-ray photoelectron spectroscopy (XPS) were used to investigate the effect of chloride presence in the electronic metal density in the d subshell of palladium dispersed on alumina. The chloride poisoning effect was interpreted as an electronic effect since a weak back-bonded Pd-CO was formed due to the decrease in the electronic density of the d subshell of palladium, which could be also detected by the higher Pd 3d5/2 binding energy in the chloride presence. A similar poisoning effect was also observed for chloride free Pd/Al2O3 reduced at 500 ºC, and it was interpreted based on the interaction of metal with the alumina surface. The use of molybdena/alumina binary system as support, yield a contrary effect due to the metal-support interaction.
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4 + 2] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.