966 resultados para wood alternatives
Resumo:
One Plus Sequential Air Sampler—Partisol was placed in a small village (Foros de Arrão) in central Portugal to collect PM10 (particles with an aerodynamic diameter below 10 μm), during the winter period for 3 months (December 2009–March 2010). Particles masses were gravimetrically determined and the filters were analyzed by instrumental neutron activation analysis to assess their chemical composition. The water-soluble ion compositions of the collected particles were determined by Ion-exchange Chromatography. Principal component analysis was applied to the data set of chemical elements and soluble ions to assess the main sources of the air pollutants. The use of both analytical techniques provided information about elemental solubility, such as for potassium, which was important to differentiate sources.
Resumo:
This paper concerns the study of biocides application in old timber structures of maritime pine (Pinus pinaster Ail.), previously impregnated with other products. A method was developed in laboratory to determine in situ the penetration depth of a product applied superficially. As initial treatment, three traditional products for sawn timber for buildings were used and, for new treatments, two newer, more environmentally benign products were used. Their ability to penetrate the pre-treated surfaces was evaluated after 1, 2 and 3 applications at 24 hours intervals and the results obtained are presented. Finally, the applicability of the developed test to the in-situ evaluation of timber structures is also discussed.
Resumo:
The aim of this paper is to analyze the forecasting ability of the CARR model proposed by Chou (2005) using the S&P 500. We extend the data sample, allowing for the analysis of different stock market circumstances and propose the use of various range estimators in order to analyze their forecasting performance. Our results show that there are two range-based models that outperform the forecasting ability of the GARCH model. The Parkinson model is better for upward trends and volatilities which are higher and lower than the mean while the CARR model is better for downward trends and mean volatilities.
Resumo:
The kraft pulps produced from heartwood and sapwood of Eucalyptus globulus at 130 degrees C, 150 degrees C, and 170 degrees C were characterized by wet chemistry (total lignin as sum of Klason and soluble lignin fractions) and pyrolysis (total lignin denoted as py-lignin). The total lignin content obtained with both methods was similar. In the course of delignification, the py-lignin values were higher (by 2 to 5%) compared to Klason values, which is in line with the importance of soluble lignin for total lignin determination. Pyrolysis analysis presents advantages over wet chemical procedures, and it can be applied to wood and pulps to determine lignin contents at different stages of the delignification process. The py-lignin values were used for kinetic modelling of delignification, with very high predictive value and results similar to those of modelling using wet chemical determinations.
Resumo:
The purpose of this work was to assess the acute toxicity on male mice to a chromated copper arsenate (CCA) solution, a widespread wood preservative used in building industry until 2002. Animals were subcutaneously injected with CCA (7.2 mg/kg arsenic and 10.2 mg/kg chromium per body weight), CrO3 (10.2 mg/kg), As2O5 (7.2 mg/kg) and NaCl (0.9%) per se, during 48 h and 96 h, for histopathology, histochemistry, chromium and arsenic analysis. The results showed some histopathological changes within renal tubules lumen of CCA exposed animals (during 48 h, and 96 h), and CrO3 (for the period of 96 h). Furthermore, the renal levels of arsenic and chromium in treated animals were statistically more evident than controls. Although, the same contents of pentavalent arsenic and hexavalent chromium were injected into treated animals with CCA and with the prepared solutions of As2O5 and CrO3, a different distribution of the pattern of these compounds was observed in kidneys.
Resumo:
Chromium copper arsenate(CCA)was used for the protection of wood building material suntil the restriction by EPA in2002. During a short period of time 14–24h,a comparative nephrotoxicity study was performed regarding the effects of CCA and its compounds per se. Histopathological and histochemical features were correlated with the concentration of the total arsenic and chromium in mice kidney. Animals were subcutaneously injected with CCA(7.2mg/kg arsenic and 10.2mg/kg chromium per body weight), CrO3 (10.2 mg/kg),As2O5 (7.2 mg/kg)andNaCl(0.9%) per se. The histopathological examination of the renal sections evidenced acute tubular necrosis in the groups of animals exposed to CCA(in both periods of time). Although the same contents of pentavalent arsenic and hexavalent chromium were injected in treated animals with CCA and with the prepared solutions of As2O5 and CrO3, the arsenic concentration on kidneys of CCA-exposed animals was much higher than those in animals exposed to As2O5 (32- and28-fold higher at 14 and 24h,respectively). However,the elimination of chromium seems to occur similarly in the kidneys of animals treated with CCA and CrO3 per se. Interactions among the components of CCA result in a marked decrease of the ability of kidney to eliminate simultaneously both analytes.The nephrotoxicity of CCA was higher than its components per se, evidencing a possible synergetic effect.
Resumo:
This study uses the process simulator ASPEN Plus and Life Cycle Assessment (LCA) to compare three process design alternatives for biodiesel production from waste vegetable oils that are: the conventional alkali-catalyzed process including a free fatty acids (FFAs) pre-treatment, the acid-catalyzed process, and the supercritical methanol process using propane as co-solvent. Results show that the supercritical methanol process using propane as co-solvent is the most environmentally favorable alternative. Its smaller steam consumption in comparison with the other process design alternatives leads to a lower contribution to the potential environmental impacts (PEI’s). The acid-catalyzed process generally shows the highest PEI’s, in particular due to the high energy requirements associated with methanol recovery operations.
Resumo:
When timber elements in heritage buildings are moderately degraded by fungi and assuming underlying moisture problems have been solved, two actions can be taken: i) use a biocide to stop fungal activity; ii) consolidate the degraded elements so that the timber keeps on fulfilling its structural and decorative functions. The aim of this work is to investigate the mechanical performance of maritime pine wood degraded by fungi after being treated with a biocide followed by impregnation with a polymer product. Three commercially available products were used: a boron water-based biocide, an acrylic consolidant and an epoxy-based consolidant. Treated and consolidated specimens were subjected to mechanical tests: axial compression test (NP 618), static surface hardness (ISO 3350) and bending test (NP 619). Sets of replicates were subjected to an evaporation ageing test (EN 73) after application of the products and also tested for mechanical behaviour. An increase in mechanical strength was observed for both consolidants with no significant influence from the previous use of biocide product. The specimens subjected to ageing showed a slightly better general mechanical performance.
Resumo:
An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.
Resumo:
In this work, a repair technique with adhesively bonded carbon-epoxy patches is proposed for wood members damaged by horizontal shear and under bending loads. This damage is characterized by horizontal crack growth near the neutral plane of the wood beam, normally originating from checks and shakes. The repair consists of adhesively bonded carbon-epoxy patches on the vertical side faces of the beam at the cracked region to block sliding between the beam arms. An experimental and numerical parametric analysis was performed on the patch length. The numerical analysis used the finite element method (FEM) and cohesive zone models (CZMs), with an inverse modelling technique for the characterization of the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the adhesive used. To fully reproduce the tests, horizontal damage propagation within the wood beam was also simulated. A good correlation with the experiments was found. Regarding the effectiveness of the repair, for the conditions selected for this work, a full strength recovery was achieved for the bigger value of patch length tested.
Resumo:
Eucalyptus globulus sapwood and heartwood showed no differences in lignin content (23.0% vs. 23.7%) and composition: syringyl-lignin (17.9% vs. 18.0%) and guaiacyl-lignin (4.8% vs. 5.2%). Delignification kinetics of S- and G-units in heartwood and sapwood was investigated by Py-GC–MS/FID at 130, 150 and 170 °C and modeled as double first-order reactions. Reactivity differences between S and G-units were small during the main pulping phase and the higher reactivity of S over G units was better expressed in the later pulping stage. The residual lignin composition in pulps was different from wood or from samples in the initial delignification stages, with more G and H-units. S/G ratio ranged from 3 to 4.5 when pulp residual lignin was higher than 10%, decreasing rapidly to less than 1. The S/H was initially around 20 (until 15% residual lignin), decreasing to 4 when residual lignin was about 3%.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Enterprise and Work Innovation Studies, 5