927 resultados para wireless sensor and robot networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lifetime calculation of large dense sensor networks with fixed energy resources and the remaining residual energy have shown that for a constant energy resource in a sensor network the fault rate at the cluster head is network size invariant when using the network layer with no MAC losses.Even after increasing the battery capacities in the nodes the total lifetime does not increase after a max limit of 8 times. As this is a serious limitation lots of research has been done at the MAC layer which allows to adapt to the specific connectivity, traffic and channel polling needs for sensor networks. There have been lots of MAC protocols which allow to control the channel polling of new radios which are available to sensor nodes to communicate. This further reduces the communication overhead by idling and sleep scheduling thus extending the lifetime of the monitoring application. We address the two issues which effects the distributed characteristics and performance of connected MAC nodes. (1) To determine the theoretical minimum rate based on joint coding for a correlated data source at the singlehop, (2a) to estimate cluster head errors using Bayesian rule for routing using persistence clustering when node densities are the same and stored using prior probability at the network layer, (2b) to estimate the upper bound of routing errors when using passive clustering were the node densities at the multi-hop MACS are unknown and not stored at the multi-hop nodes a priori. In this paper we evaluate many MAC based sensor network protocols and study the effects on sensor network lifetime. A renewable energy MAC routing protocol is designed when the probabilities of active nodes are not known a priori. From theoretical derivations we show that for a Bayesian rule with known class densities of omega1, omega2 with expected error P* is bounded by max error rate of P=2P* for single-hop. We study the effects of energy losses using cross-layer simulation of - large sensor network MACS setup, the error rate which effect finding sufficient node densities to have reliable multi-hop communications due to unknown node densities. The simulation results show that even though the lifetime is comparable the expected Bayesian posterior probability error bound is close or higher than Pges2P*.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed SmartConnect, a tool that addresses the growing need for the design and deployment of multihop wireless relay networks for connecting sensors to a control center. Given the locations of the sensors, the traffic that each sensor generates, the quality of service (QoS) requirements, and the potential locations at which relays can be placed, SmartConnect helps design and deploy a low-cost wireless multihop relay network. SmartConnect adopts a field interactive, iterative approach, with model based network design, field evaluation and relay augmentation performed iteratively until the desired QoS is met. The design process is based on approximate combinatorial optimization algorithms. In the paper, we provide the design choices made in SmartConnect and describe the experimental work that led to these choices. Finally, we provide results from some experimental deployments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are given a set of sensors at given locations, a set of potential locations for placing base stations (BSs, or sinks), and another set of potential locations for placing wireless relay nodes. There is a cost for placing a BS and a cost for placing a relay. The problem we consider is to select a set of BS locations, a set of relay locations, and an association of sensor nodes with the selected BS locations, so that the number of hops in the path from each sensor to its BS is bounded by h(max), and among all such feasible networks, the cost of the selected network is the minimum. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard, and is hard to even approximate within a constant factor. For this problem, we propose a polynomial time approximation algorithm (SmartSelect) based on a relay placement algorithm proposed in our earlier work, along with a modification of the greedy algorithm for weighted set cover. We have analyzed the worst case approximation guarantee for this algorithm. We have also proposed a polynomial time heuristic to improve upon the solution provided by SmartSelect. Our numerical results demonstrate that the algorithms provide good quality solutions using very little computation time in various randomly generated network scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developments in Micro-Electro-Mechanical Systems (MEMS), wireless communication systems and ad-hoc networking have created new dimensions to improve asset management not only during the operational phase but throughout an asset's lifecycle based on using improved quality of information obtained with respect to two key aspects of an asset: its location and condition. In this paper, we present our experience as well as lessons learnt from building a prototype condition monitoring platform to demonstrate and to evaluate the use of COTS wireless sensor networks to develop a prototype condition monitoring platform with the aim of improving asset management by providing accurate and real-time information. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A second harmonic suppression scheme allowing RoF links to support communications and passive UHF RFID is reviewed. Using RoF distributed antenna system techniques, the coverage and location accuracy of passive UHF RFID are significantly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks are characterized by limited energy resources. To conserve energy, application-specific aggregation (fusion) of data reports from multiple sensors can be beneficial in reducing the amount of data flowing over the network. Furthermore, controlling the topology by scheduling the activity of nodes between active and sleep modes has often been used to uniformly distribute the energy consumption among all nodes by de-synchronizing their activities. We present an integrated analytical model to study the joint performance of in-network aggregation and topology control. We define performance metrics that capture the tradeoffs among delay, energy, and fidelity of the aggregation. Our results indicate that to achieve high fidelity levels under medium to high event reporting load, shorter and fatter aggregation/routing trees (toward the sink) offer the best delay-energy tradeoff as long as topology control is well coordinated with routing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Science Foundation Ireland (07/CE/11147); Irish Research Council for Science Engineering and Technology (Embark Initiative)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the generic attacks and countermeasures for block cipher based message authentication code algorithms (MAC) in sensor applications is undertaken; the conclusions are used in the design of two new MAC constructs Quicker Block Chaining MAC1 (QBC-MAC1) and Quicker Block Chaining MAC2 (QBC-MAC2). Using software simulation we show that our new constructs point to improvements in usage of CPU instruction clock cycle and energy requirement when benchmarked against the de facto Cipher Block Chaining MAC (CBC-MAC) based construct used in the TinySec security protocol for wireless sensor networks.